
AD-AIIO 002 INTEftMETftCS INC CAMBRIDGE MA F/6 Q/2
ADA INTEGRATED ENVIRONMENT I COMPUTER PROGRAM DEVELOPMENT SPEC I--ETC(U)
DEC 81 F30602-80-C-0291

UNCLASSIFIED AOC-1R-81-35-VOL-, NL

NONI- lE

mhmmhhhImhln
*uuuuIulul



1111 1 2

L611 16 0

11 1.51 1.

MICROCOPY RESOLUTION TEST CHART
NAIOFAL BUREAU OF SIANDARDS 1963-A,



PHOTOGRAPH THIS SHEET

0 LEVEL +"&tCST IcI 7 NVE WIRY

Dietributln Unlimited

DIS RIUTION STATEMENT

ACCMSION FOR
NIS GRAMI

TI TC
SUNANNOUNMl ELCT
! JUSTIFICATION

RETURN T 5C1W

A V A IL .ADO UET C O DON-DlW AVAIL AND/OR WBCIAL DATE ACCLESIONED

DWISTIUTION STAM

DATE RECEIVED IN DTIC

PHOTOGRAPH THIS SHEET AND RETURN TO DTIC-)DA-2 -

FORM DOCUMENT PROCESSING SHEE[ [' DTIC OCT 79 70A 
i

I -TT



RADCTR-81458, Vol IV (of seven)
Interim Repor
December 1981

ADA INTEGRATED ENVIRONMENT I
COMPUTER PROGRAM DEVELOPMENT

o) SPECIFICATION

Intermetrics, Inc.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

ROME AIR DEVELOPMENT CENTER
.Air Force Systems Command
Griffiss Air Force Base, New York 13441

T 19-77' 11:- 1 -



This document was produced under Contract F30602-80-C-0291 for the
Rome Air Development Center. Mr. Don Roberts is the COTR for the Air Force.
Dr. Fred H. Martin is Project Manager for Intermetrics.

This report has been reviewed by the RADC Public Affairs Office (PA) and
is releasable to the National Technical Information Service (NTIS). At NTIS
it will be releasable to the general public, including foreign nations.

RADC-TR-81-358, Volume IV (of seven) has been reviewed and is approved
for publication.

APPROVED: /24g7

DONALD F. ROBERTS
Project Engineer

APPROVED:

JOHN J. MARCINIAK, Colonel, USAF
Chief, Command and Control Division

FOR THE COMANER JOHN P. HUSS

Acting Chief, Plans Office

If your address has changed or if you wish to be removed from the .RADC
mailing list, or if the addressee is no longer employed by your organization,
please notify RADC (COES) Griffiss AFB NY 13441. This will assist us in
maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or notices

on a specific document requires that it be returned.



V!

UNCLASSIFIED
SECURTYT CLASSIPCATION OF THIS 0AG662I. Dtl RIne.l.*/ .__ _M~.D IN TI &I=$ .

REPORT DOCUMENTAT1ON PAGE 89onZ COMPLOLO ORn ,

RADC-TR-81-358. Vol IV f
4. TITLE (Sad Sil,, S. TYE U: REPORT & 0000 COVERED

Interim Report
ADA INTEGRATED ENVIRONMENT I COMPUTER 15 Sep 80 - 15 Mar 81
PROGRAM DEVELOPMENT SPECIFICATION a. ,6iFRiom.e oI "PMST uvusM
__ _ _ _ _ _ __ _ _ _ _ _ _ __ _ _ _ _ _ _ N/A

7. AUTHOR(A) IL CONTRACT OR GRANT NMUTEW.)

F30602-80-C-0291

S. 1ERPORMNO ORGANIZATION NAmt AND ADDRESS Is. .'AUSAEME 1V KP _ J. TAI

Intermetrics, Inc. 6220AF/33126F733 Concord Avenue 6 108I..g~u~g55811908

Cambridge MA 02138
,I. CONTROLING OFFICE NAME ANG ADDRESS IS. 4EPoR SATS

December 1981
Rome Air Development Center (COES) Is. NWeSERorP Pas
Griffiss AFB NY 13441 60
14. MUSiTORING A49MCy NAMELI AOOI dllu.I hum C..01W4 Olin) i. SECURITY CLASS. O 01 e tome)

Same UNCLASSIFIED
IS&. zo" SI AT1om/

4. O*STIDUUTION STATEMENT (el lf RWIJ

Approved for public release; distribution unlimited.

IM. ISTRUUTION STATEMENT (e M of no WW.0*Md in 819 20. It "fNfhum ARP)

Same

Is. SUPPLEMENTARY NOTES

RADC Project Engineer: Donald F. Roberts (COES)

Subcontractor is Massachusetts Computer Assoc.
IS. KEY P535 (aiinm. &I ,pewin .o it ese..M. AdW hmIF bp ""k iiW)
Ada MAPSE AZE
Compiler ernel Integrated environment
Database Debugger Editor
KAPSE APSEIL ASTRACT (Cwo m M r ide If n...nw R idmilt OF Wesi I)

The Ada Integrated Environment (ATE) consists of a set of software tools
intended to support design, development and maintenance of embedded
computer software. A significant portion of an AlE includes software
systems and tools residing and executing on a host computer (or set of
computers). This set is known as an Ada Programing Support Environment
(APSE). This B-5 Specification describes, in detail, the design for a
minimal APSE, called a MAPSE. The MAPSE I. the foundation upon which an

DD , ", 1473 EToN O. o N 56 oeSoI.EI UNCLASSIFIED

SECURITY CA"NSIPICAT, OF "Is PaGE (ohm Do" &...Z

A



rt.

UNCLASSIFIED
gCULM v Ct.AaMPICATIO Of TUrq pn ~ oe go,

APSE Is built and vil provide comprehensive support throughoit the
design, development and maintenance of Ada software. The MAPSE tools
described in this specification include an Ada compiler, linker/loader,
debugger, editor, and configuration management tools. The kernel (KAPSE)
will provide the interfaces (user, host, tool), database support, and
facilities for executing Ada programs (runtime support system).

4

UNCLASSIFIED

scuntry CLAugfqC4Iof Two PAgeIm . e ."



I jFA

TABLE OF CONTENTS

PAGE

1.0 SCOPE 1

1.1 Identification I
1.2 Functional Summary 1

1.2.1 Text Parsing (Lexer/Parser Generator) 1
1.2.2 Data Management (Virtual Memory Methodology) 1
1.2.3 Initial Tool Construction (Bootstrap) 1

2.0 APPLICABLE DOCUMENTS 3

2.1 Government Documents 3
2.2. Non-Government Documents 3

3.0 REQUIREMENTS 5

3.1 Program Definition 5

3.1.1 Text Parsing (Lexer/Parser Generators) 5
3.1.2 Data Management (Virtual Memory Methodology) 5

3.2 Detailed Functional Requirements 12

3.2.1 Text Parsing 12
3.2.2 Data Management (Virtual Memory Methodology) 14

3.3 Adaptation 46

3.3.1 Initial Tool Construction 46
3.3.2 Rehosting 49

4.0 QUALITY ASSURANCE PROVISIONS 51

4.1 Text Parsing 51

4.1.1 Unit Testing 51
4.1.2 Integration Testing 51
4.1.3 Acceptance Testing 51

i

INTERMETRICS INCORPORATED 733 CONCORO AVENUE * CAUMSRaG, WASSACHUSETT 01138* 61-) 61-1640



4.2 Data Management 52

4.2.1 Unit Testing 52
4.2.2 Integration Testing 52
4.2.3 Acceptance Testing 53

5.0 PREPARATION FOR DELIVERY (N/A) 55

6.0 NOTES 57

10.0 APPENDIX I 59

10.1 Virtual Record Notation Grammar 59

FIGURES

Figure 3-1: CREATION OF LEXSYN BY LEXER AND PARSER GENERATORS 6

FIGURE 3-2: VMM REPRESENTATION ANALYZER 9

FIGURE 3-3: VMM PACKAGE HIERARCHY AND DATA PATHS 10

I
ii

INTERMETRIC8 INCORPORATED * 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS8 02138 * (p17) Ml -1840



! ! I is

1.0 SCOPE

1.1 Identification

This specification defines the requirements for MAPSE
Generation and Support (MGS). The functional area identified by the
term MGS consists of those elements used in the construction,
maintenance, and rehosting of MAPSE tools (as opposed to programs
that are primary MAPSE tools).

1.2 Functional Summary

MGS is the means by which MAPSE tools are constructed and
maintained in a consistent, reliable, and portable form. Within
this functional area, three sub-areas are defined: (1) Text
Parsing; (2) Data Management; and (3) Initial Tool Construction.

1.2.1 Text Parsing (Lexer/Parser Generator)

Tools that must parse text input (notably the compiler) are in
part constructed "automatically"; that is, by means of lexer and
parser generators. This assures a correct parse and provides uniform
treatment of syntactic errors. By making the lexer and parser
generators MAPSE tools, the maintenance of existing tools and 4,

generation of new tools is supported entirely within the MAPSE.

1.2.2 Data Management (Virtual Memory Methodology)

MAPSE tools must be able to preserve data structures within the
KAPSE Database in order to communicate with other tools or with
subsequent activations of the same tool. In general, it cannot be
assumed that the address space of the host machine will be adequate
to keep such data structures entirely within memory while they are
used. A Virtual Memory Methodology (VMM) provides both a means of
representing the data structures used by tools in a consistent and
efficiently-accessed external form, and a means of overcoming
address space limitations on the size of data structures. In
addition, VMM provides aids to debugging (a human readable
representation) and communication between hosts (a compressed binary
host-independent representation).

1.2.3 Initial Tool Construction (Bootstrap)

Since MAPSE tools, including the Ada compiler, are coded in
Ada, a bootstrap step is required to establish an operational
self-hosted compiler, as it is for any compiler implemented in the
language it compiles. However, the runtime environment required to
execute the MAPSE compiler is supplied by MAPSE and KAPSE functions
which are themselves coded in Ada. Establishing a complete
operational MAPSE requires a number of intermediate bootstrapping
steps to support parallel development of the compiler, the KAPSE,
and the separate compilation facilities of the MAPSE.

1

INTERMErTRICS INCORPORATED • 722 CONCORD AVENUE • CAMBRIDGE, MASACHUSETTS 021238 * (17) UI1100

- -_ _ .



The steps in such a parallel development include rehosting the
compiler and other tools from an intermediate development
environment to run in the MAPSE environment; these are essentially
the same steps involved in rehosting the completed MAPSE to a
different machine (excluding code generator modifications in the
host compiler). Therefore the subject of initial tool construction
is covered in detail in Section 3.3 where rehosting considerations
are included.

t,

2

INTERMETRISC INCORPORATED * 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02136 117) 681-1340

m r Mir".

r ; _, ,1



2.0 APPLICABLE DOCUMENTS

Please note that the bracketed number preceding the document
identification is used for reference purposes within the text of
this document.

2.1 Government Documents

[G-l] Reference Manual for the Ada Proqramming Language,
proposed stan-Nar document, U.S. Department of Defense,
July 1980.

2.2 Non-Government Documents

[N-li Diana Reference Manual, G. Goos and Wm. Wulf, Institut
Fuer Automatik IT, Universitaet Karlsruhe and Computer
Science Dept, Carnegie-Mellon University, March 1981.

[N-21 Guido Persch, Georg Winterstein, Manfred Dausmann,
Sophia Drossopoulu, AIDA Implementation Description,
Institut fuer Automatik II, Universitaet Karlsruhe,
December 1980.

[N-3] Wetherell, Charles, Alfred Shannon, LR: Automatic
Parser Generator and LR(l) Parser, Preprint UCRI-82926,
Uni sity of Cal'1-ra, D--, June 1979.

[N-41 Pager, D., A Practical General Method for Constructin
LR(k) Parsers, Acta Info'rmatica 7, pp.24T-268, 1977.

[N-5] Manfred Daussmann, Sophia Drossopoulu, Guido Persch,
Georg Winterstein, An Informal Introduction to AIDA,
Institut fuer Autom-atik II, Universitaet Karlsruhe,
November 1980.

[N-6] Benjamin M. Brosgol, David Alex Lamb, David R. Levine,
Joseph M. Newcomer, Mary S. Van Deusen, William A. Wulf,
TCOLAA: Revised Report on an Intermediate
Representation for the Prelimnar Ad Language,
Computer Science Dept, Uarnegie-Rello--University,
February 1980.

[N-7] R. Cattell, D. Dill, P. Hilfinger, S. Hobbs, B.
Leverett, J. Newcomer (principal editor), A. Reiner, B.
Schatz, W. Wulf, PQCC Implementor's Handbook, October
1980.

[N-81 J. D. Ichbiah, J. G. P. Barnes, J. C. Helian, B.
Krieg-Bruechner, 0. Roublne, B.A. Wichmann, Rationale
for the Design fo the Ada Programming Language; ACM
SIGPLAN Notices, Vol. 14, No.6, June 1979, Part B.

[I-lI Intermetrics LG Description, 31 August, 1980, IR-536

[1-21 LG User's Guide, December 1979, IR-427

3

INTERMETRICI INCORPORATED 73 CONCORD AVENUE * CAMIRIDGE, MASBACHUSII' 021B 1617) WI1-1840

7-. . .



(1-3] System Specification for Ada Integrated Environment,
Type A, Intermetrics, Inc., March 1981, IR-676.

Computer Program Development Specifications for Ada Integrated
Environment (Type 5):

[1-4] Ada Compiler Phases, IR-677

[1-5] KAPSE/Database, IR-678

[1-6] MAPSE Command Processor, IR-679

[1-7] Program Integration Facilities, IR-681

[1-8] MAPSE Debugging Facilities, IR-682

[1-9] MAPSE Text Editor, IR-683

[I-10] Technical Report (Interim) IR-684 [

,gI,

4

INTERMETRICS INCORPORATED *733 CONCORD AVENUE *CAMBRIDGE, MASSACHUSETTS 02138 *(617) 661-1840

Ile i O_ I



3.0 REQUIREMENTS

3.1 Program Definition

3.1.1 Text Parsing (Lexer/Parser Generators)

3.1.1.1 Capabilities

MAPSE tools that parse text input use a table-driven lexer and
LR parser. A lexer is employed to break an input file into a stream
of tokens. The lexer accepts some langdage from the family of
regular expressions, i.e., it is equivalent to a finite state
automaton. The parser takes the stream of tokens produced by the
lexer and produces a parse of the input. The LR parser accepts some
language from the family of LR (1) languages. These capabilities are
required by the compiler, which contains the most heavily used
parser in the MAPSE, LEXSYN (1-4,3.2.21.

Two tools are utilized to create the parser and lexer - the
parser generator and the lexer generator. Each tool consists of:

1. a program whose input is a formal grammar and whose output
is a set of tables; and

2. a skeleton recognizer program that works from these tables.

3.1.1.2 Interfaces

Figure 3-1 displays the offline operation of creating an Ada
parser. It demonstrates the interfaces of both generators,
especially the token table that is passed from the parser generator
to the lexer generator. The specific parameters and methods of
processing are described in Section 3.2.1.

3.1.2 Data Management (Virtual Memory Methodology)

3.1.2.1 Capabilities

The VMM is a technique for defining, creating, and accessing
representations of data structures. The use of Virtual Memory
Methodology to implement a data structure in Ada provides the
following capabilities:

1. A permanent, directly accessible representation of an
instance of a data structure can be created in the KAPSE
database and can be efficiently accessed by any MAPSE tool
that uses the same definition of the data structure,

5

INTERMETRICS INCORPORATED 733 CONCORD AVENUE *CAMBRIDGE, MASSACHUSETTS 02138 *(617) 661-1840

-PowWTW



I

* ~21281131-1?
Fr qore 3-1 O.atio of L8-VW by l er an1 parse ( aerator

Table~s Table Listi

FIGURE 3-1: CREATION OF LEXSYN BY LEXER AND PARSER GENERATORS

6
INTERMETRICS INCORPORATED * 733 CONCORD AVENUE o CAMBRIDGE, MASSACHUSETTS 02138 * (617) 061.1840

• -- - -, , .. ' ... ' .. - - . i- .. . ...i -2L12. . . .



2. Since data paging is part of the access method, the direct
addressability of such data structures is independent of
the actual addressing range of the host system.

3. It is possible to perform automatic conversions between a
directly accessible representation of a data structure and
either of two host system independent linear
representations:

a) a human-readable text, which is primarily of use for
debugging and testing; or

b) a compressed binary form, which may be used to transfer
a representation between hosts.

While the human-readable form could also be used for the latter
purpose, compressed binary is much more compact and uses fewer
resources for the conversion process.

3.1.2.2. Interfaces

(a) KAPSE. VMM interfaces with the KAPSE database via package
Input-- put. In particular, VMM instantiates the package for a
singlF record type (which is known as a VMM page) and creates
dynamic objects that include objects of the type IN FILE and
INOUTFILE from that instantiation.

The string names for database objects, required by certain
Input/Output operations, are obtained in one of the following ways:
(1) as actual parameters to VMM operations that invoke Input/Output
operations; (2) as values from database objects whose names were
previously supplied as actual parameters to VMM operations; or (3)
as uniquely-generated names for temporary database objects.

VMM also operates on IN FILE and OUT FILE objects of package
TEXT 10. These files are uFed for error messages, human-readable
representations, and compressed binary representations.

(b) Tool Builder. Since VMM is a method for implementing data
structures used by MAPSE tools, it defines a "user interface" to the
tool builder. This interface has three main components: (1) data
structure definitions; (2) primitive operations; and (3) linear
representations.

DATA STRUCTURE DEFINITIONS:. Data structure definitions
descr-e-the data structures to be accessed by the tool. The
definition must provide sufficient information so that the tool can
access the data as an Ada object, and so that VMM operations can be
derived to create the object and/or convert it to or from a

7
INTERMETRICS INCORPORATED 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02136 * (617) 0611640

. .. ... L,,. . .. L ; _I .! , I ,,. , 4



human-readable representation. To accomplish this, the tool builder
uses an Ada package specification to define a virtual record type.
This virtual record type is specified as an Ada variant record type
with a single discriminant. The discriminant must be of an
enumeration type defined in the same package.

A virtual record is named by a literal belonging to the
enumeration type, and consists of those components that are
applicable to the variant record having that value as a
discriminant. This is the basis for mapping between internal and
human-readable forms.

The types of virtual record components are limited to a subset
of Ada type constructors and a set of types supplied by the VMM
implementation through generic packages. In particular, no Ada
ACCESS types may be used; instead, VMM locator types are used.

While the definition package specification coded by the tool
builder is valid Ada, that package specification is not directly
compiled with the tool. Instead, the specification is processed by
a representation analyzer that combines the definitions for one or
more virtual record types, enforces the restrictions and conventions
required by VMM, and generates a new package specification and
package body. The package is called the VMM access package, and all
operations on VMM data that are available to the MAPSE tool are
declared in its visible part (see Figure 3-2). The new package
specification includes additional declarations that are needed by
VMM but which would be tedious to code explicitly. The package body
defines procedures that build a symbolic description of the virtual
records (i.e., defines character strings for identifiers) to
support the reading and writing of the human readable form.

PRIMITIVE OPERATIONS: Primitive operations are defined in the
VMM access package produced by the representation analyzer. A MAPSE
tool must be compiled with this package in order to create, access,
and operate on a VMM data structure. The operations declared in the
access package are generally supported by more primitive operations
defined in the VMM implmentation package which are, in turn,
supported by package input output in a layered fashion. A MAPSE
tool may very well interposF another layer of abstraction on top of
the access package as shown in Figure 3-3.

Most primitive operations require a reference to a virtual
memory domain (VMD), a collection of virtual memory sub-domains
(VMSD) that contain VMM objects described by the same VMM data
definition package. Those objects may also contain VMM locators
that directly identify VMM objects in any other sub-domain. A VMM
object may be created within the context of a VMSD, yielding a VMM
locator. Within the context of a VMD, a VMM locator may be
dereferenced to obtain an Ada ACCESS value known as a VMM accessor.
The type of this value is defined by the
representation analyzer as an unconstrained Ada ACCESS type to the
variant record type specified in a virtual record type definition.
In general, the tool builder uses the dereference and
convert-to-ACCESS-value technique to access virtual record
components.

8

INTERMETRICS INCORPORATED * 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSErrS 0213B * (617) 61.1840

II -



virtual Pacrd 7ype
Dlefinitions

(Pad-wg Specificationsa) "tree. "lamd debug- 0 0

Fiur 32 CIJ9q n dereattcl~Aiayrn

FIGUREGneat 3-2:g and RERSETTONAAyZE

vw -- JI



rdh

MA..I~

Ntt.-

Viftts I lkmrd

7Y -iti Pcaq TW~ C~t~ fr MM Pg

14- il

FIGUR 3-3 VMMPACKAE HIRARCY ANDDATAPATH

10 JFb

INTERMETA ~ ~ ~ S~bcSi I9cORORAE j. 733 i COCR VNE*CMRDE ASAUSET 218*(676114



While a VMM locator, once obtained, remains valid throughout
the life of a VMD, a VMM accessor is valid only within a smaller
dynamic scope of program execution. That scope extends from the
time at which the accessor was given a value (by dereferencing a VMM
locator) to the time at which the next locator is dereferenced (in
the context of any VMD anywhere in the program). The validity scope
for a VMM accessor may also be explicitly controlled.

Other primitive operations are defined for a number of VMM
data abstractions. These include lists, arrays, and sets of virtual
records and object tynes defined by the VMM implementation, as well
as varying length strings. In general, these operations use or
produce typed VMM locators to designate operands and results; these
locators, unlike locators for virtual records, are not dereferenced
by the tool builder.

LINEAR REPRESENTATIONS: Linear representations of VMM domains
can be generated which represent VMM objects in terms of name =>
value associations. These linear forms can also be read by VMM
programs which use virtual record types with compatible names. This
facility is used by the tool builder to display and generate
instances of data structures during tool development and testing,
and thus presents an interface to the tool builder. Because the
human readable form is simply a text file, it can be easily
manipulated using the MAPSE text editor.

A compressed binary representation, semantically equivalent to
the human-readable form but more compact, is manipulated only by VMM
operations and does not present an interface known outside of VMM.

The human-readable representation of VMM data structures is
loosely based on the form proposed for the external representation
of the Diana intermediate language for Ada programs [References N-1
and 1-4]. This form is an adaptation of the linear graph notation
used for the TCOLAda intermediate language [N-6]; the primary
textual differences of interest are the use of explicit bracket
tokens which permit nested forms, and a textual distinction between
defining occurrences and references. The form used to represent VMM
domains reflects the sub-domain structure explicitly and contains
other constructs found to be useful in the linear graph notation
used to represent virtual memory data structures in existing
Intermetrics' compilers. The details of the adaptation for use by
VMM are provided in Section 3.2.2.5. This form of representation is
called virtual record notation (VRN).

(c) Compiler. The Ada ACCESS type which designate VMM objects are
V specTiied as accessing checkpointed data by means of the

mark release compiler PRAGMA [1-4, 10.2.2.3]. Such types are not
subject to garbage collection or explicit storage reclamation that
depends on the type of the object designated. Values for these
types may thus be generated by unchecked conversions of an integer
type suitable for address computations without interacting badlywith Ada run-time storage management. The VMM representation
analyzer has a direct interface with the compiler in that it is
partly constructed from the LEXSYN and SEM compiler phases (1-4,
3.2.2 and 3.2.3].

INTERMETRICS INCORPORATED 733 CONCORD AVENUE e CAMBRIDGE, MASSACHUSETTS 0213B (817) l61-1840



3.2 Detailed Functional Requirements

3.2.1 Text Parsing

This section discusses the parser and lexer generators. The
corresponding parser and lexer are described as part of LEXSYN [1-4
3.2.21. Figure 3-1 provides a block diagram of the two generators.

3.2.1.1 LR Parser Generator

(a) Characteristics. LR, the parser generator developed at Lawrence
Livermore Laboratory TRef N-3], serves as the basis for the MAPSE
parser generator. LR was used to build the Ada parser for the
compiler Intermetrics is implementing for DARPA. Thus LR is
sufficient to handle Ada. A JOVIAL compiler project at Intermetrics
has created an enhanced version of the LR parser skeleton displaying
improved error recovery. This is exactly the kind of error recovery
required by LEXSYN [1-4, 3.2.2.2 (b)].

(b) Input. The parser generator has a single input file, consisting
of an LR(l) grammar expressed in BNF. (This grammar for Ada already
exists as a by-product of the DARPA Ada compiler project.) Each
grammar production is augmented by actions to be taken when the
corresponding reduce transition occurs during parsing. The actions
employed for LEXSYN deal with the construction of pieces of the AST
(abstract Syntax Tree) for the program.

(c) Processing. LR utilizes the efficient grammar analysis
algorithm of Pager [N-41. The details of constructing LR(l) parse
tables can be found in [Ref N-3], [Ref N-4]. In summary, the full
characteristic finite-state machine with one-symbol look-ahead is
constructed, but states are merged when equivalent as long as this
does not introduce inadequacies.

(d) Outputs. Three output files are created by the parser

generator.

The Listing file contains the following information:

1. errors in the grammar;

2. terminals and non-terminals of the grammar, with internal
numbers assigned by the generator;

3. pretty printed grammar;

4. LR properties of the grammar (optional);

5. complete state-transition description of parser (optional)

The latter two listing sections (4 and 5) are useful for debugging a
grammar.

12
INTERMETRICS INCORPORATED * 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 (617) 661-1640



The Token Table file contains the data in (2) above, for
grammar terminals, in tabular form. The terminals are exactly the
tokens that are accepted by the lexer. When a terminal is
recognized by the lexer, the internal number assigned by the parser
is returned. The Token Table communicates these numbers to the
lexer generator.

The Parse Table file contains an encoding of the states and
transitions of the LR parser, plus the actions associated with
productions. This file and the Token Table file are combined with
the parser skeleton to form the parser.

3.2.1.2 Lexer Generator

(a) Inputs. The lexer generator has two input files: the Token
Table i. e created by the parser generator (3.2.1.1 (d)), and a file
consisting of the grammar for the tokens expressed as regular
expressions. Actions are associated with the regular expressions.

(b) Processing. There are two classes of tokens, which are treated
somewhat differently by the resulting lexical analyzer.

1. Keywords and special operators (e.g., "BEGIN", "4") are
each distinct tokens and uniquely stand for themselves.
The lexer returns only the internal token number to the
parser.

2. Other terminals (e.g., <identifier>, <real literal>)
represent a whole family of character strings in the input
stream. The lexer returns both a token number and a value;
e.g., X or 3.14159.

The parser generator easily distinguishes between these two classes
and passes this information on via the Token Table. (Class 1
terminals appear literally in the LR(l) grammar; class 2 terminals
appear as non-terminals which have no defining production in the
LR(l) grammar.)

In the resulting lexer, the class 1 terminals are kept in a
hash table. One action that can be specified is to look up the
current input string in the hash table. If a match is found, then
the corresponding token number is returned. In the case of no
match, a specified default token is returned. For example, this
action would be used for the regular expression representing
"character optionally followed by characters and digits optionally
containing interspersed underscores." If such a string is not a
keyword, then it is recognized as an <identifier>.

This hash table scheme for class 1 terminals has several
advantages.

- It is not necessary to create regular expressions for all of
the keywords and operators.

- The lexical analyzer does not have numerous single-character
transition states in order to spell out each class 1
terminal.

13
INTERMETRICS INCORPORATED * 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138, (617) 01-1940

II . -
-

2 , _-L



- The hash function for the keywords can be optimized by the
lexer generator, making keyword recognition efficient.

The more straightforward lexical action is to return the
specified class 2 terminal when the corresponding regular expression
is recognized.

(c) Outputs. Two files are output from the lexer generator.

The Listing file contains a "prettied" version of the tokens
and the regular expressions, and the state-transition description of
the finite-state automaton.

The Lex Table file consists of the keyword hash table, and the
table of states and transitions, "'iese tables are combined with the
lexer skeleton to create the le)?

3.2.2 Data Management "Virt -h r" Methodology)

3.2.2.1 VMM Objects, Dakatai bects, and Domains

VMM provides for the definition, creation, access,
manipulation, and storage (within the KAPSE database) of VMM
objects. A VMM object may either be a data aggregate with abstract
properties defined by the VMM implementation (arrays, lists, sets,
strings) or else it may be a virtual record with components defined
by the user of the VMM implementation (i.e., a MAPSE tool
builder).

A virtual record is realized in Ada as an object of some record
type with a single discriminant of some enumeration type; the
discriminant is used only for case selection of components and not
for constraints on component types. Further, the component types
have statically determined sizes and contain no Ada ACCESS types or
types for which assignment is not available. This record type thus
defines a set of virtual record subtypes, where each value of the
discriminant names a virtual record subtype with a statically
determined size and representation; since it contains no ACCESS,
TASK, or LIMITED PRIVATE types, objects of the type can be safely
written to external files (i.e., KAPSE database objects accessed
through package INPUT OUTPUT) and read by subsequent program
activations. The central function of the VMM package involves the
creation of VMM objects within external files and the support of
direct references from one VMM object to another in an efficient
manner whether the VMM objects reside in the same or different
external files. (Note: the term external file will be used in these
sections to designate a KAPSE database object identified as a STRING
to package INPUT OUTPUT, while the term obje will be used in the
Ada sense; the term VMM object will Bemused to designate VMM
aggregates and virtuar-wecor-shich are allocated within external
files by VMM operations and are identified by VMM locators).

14
INTERMETRICS INCORPORATED 732 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 0213 (617) 61-1640

I -i ..... - .. .. . ............ ...... ~ i



VMM operations which involve VMM objects must have a method for
locating those objects within external files and establishing the
subtype of virtual records with respect to the proper virtual record
type. The method is that of defining the VMM locator type as a
sub-domain number and a position within that sub-domain. A locator
has meaning only with respect to a dynamically created virtual
memory domain: the VMM implementation maintains, during the course
of a program activation, an association between a virtual memory
domain and a number of sub-domains which are defined as an
association of a sub-domain number, an external file name, the name
of a virtual record type, and a mode of operation.

(a) Domain Characteristics. In order to access VMM objects, a
program must first create a domain. The function new domain returns
a value of the private type VMM domain, which identrfies a domain
that is initially empty (has no sub-domains). Sub-domains can be
added to this domain by calling the procedure new sub domain, with
parameters:

1. Domain

2. Sub-drnia.n number (VMM-defined integer type)

3. Namp of -i4ternal file

4. Na ie of vir tual record type

5. Mode of operation (read, update, extend, create)

This procedLre only establishes the sub-domain number as one that
may be used to identify a sub-domain within the domain, and provides
the information needed to access an external file when the
sub-domain is referenced. If the sub-domain is never referenced, no
database access occurs. If the sub-domain number is already
available to the domain, the exception sub domain conflict is
raised.

The name of the virtual record type is a value of an
enumeration type defined in the VMH access package produced by the
representation analyzer. This enumeration names the variant record
types, each of which defines the kind of virtual records that may
occur in a given sub-domain. This should not be confused with the
enumeration types which are used for the discriminants of the
variant records. For example, in the following fragment of such a
package, the enumeration literals "tree" and "person" identify
virtual record types, while "male" and "female" identify virtual
record sub-types of the virtual record type "person". The virtual
record types VMM TRANSLATION and VREC DESCRIPTION are defined by the
VMM implementatTon and are always- included in the VRECtypes
enumeration by the representation analyzer.

is
INTERMETRICS INCORPORATED 733 CONCORD AVENUE CAMBRIDGE. MASAC14UUETT 02126 * (617M) 1-1640



WITH VMM_implementation-pkg;

PACKAGE VMM domain-pkg IS

PACKAGE tree-pkg IS

TYPE tree-kind IS (t-access,t derived);

TYPE tree-record (kind:tree kind) IS

RECORD

source_position:src_pos_type;

CASE kind IS

WHEN t access -> size:storage integer;

WHEN t derived => type_spec:VREC locator;'I

END CASE;

END RECORD;

TYPE accessor IS ACCESS tree-record;

END tree pkg;

PACKAGE person_pkg IS

TYPE person-kind IS (male,female);

TYPE person-record (kind:person-kind) IS

RECORD

CASE kind IS

WHEN male -> bearded:boolean;

WHEN female *> hairstyle:style-enum;

16
INTERMSTRICS INCORPORATED *733 CONCORD AVENUE *CAMBRIDGE. MASSACHUSETTS 02138 1 617) 661-1640



END CASE;

END RECORD;

TYPE accessor IS ACCESS person_record;

END personpkg;

TYPE VRECtypes IS (VMMTRANSLATION, VREC DESCRIPTION,
tree,person);

END VMM domain pkg;

While a domain may contain virtual records of various virtual record
types, a given sub-domain may only contain virtual records of the
same virtual record type (although they may be of different
sub-types).

Thus, a virtual memory domain is characterized by:

1. The set of virtual record types that are known within it.
These types are defined by the tool builder and processed
by the representation analyzer to produce a single Ada
PACKAGE which includes the tool builder's type definitions
and adds further information such as the enumeration of
virtual record types just described. This characteristic
is static.

2. The set of sub-domains of which the domain is composed.
This characteristic is dynamic, in the sense that
sub-domains are added to and removed from a domain by the
execution of procedures, subject to the constraint that the
virtual record type of each sub-domain is known in the
domain. The set of sub-domains which compose a domain
defines a virtual address space in terms of VMM locators:
each locator identifies a sub-domain number and a position
within that sub-domain.

(b) Sub-domain Characteristics. A sub-domain is identified by a
domain and a sub-domain number. A sub-domain number is either
present or absent with respect to a domain. Each sub-domain number
present in a domain identifies an external file, a virtual record
type, and a mode of operation; it provides access to a virtual
address space in terms of positions within the external file. The
external file is accessed using a single instantiation of the
generic package INPUT OUTPUT for elements of a record type defined
by the VMM implementaEion as a VMM page: when the mode of operation

17
INTERMETRICS INCORPORATED 73 CONCORD AVENUE CAMBRIDGE. MASSACHIUSETTS 02138 * (617) 661-1840

| I .. . ... .. ... .....



for the sub-domain is read-only, access is through an object of type
INFILE, and otherwise through an object of type INOUTFILE.

The position-number of each element in the file is known as the
page number. Read and write operations move the contents of a VMM
page between the external file and a page buffer. Page buffers are
assigned to the external files on a demand basis from a common pool
of buffers allocated from the heap and shared by all sub-domains
present in a program. Demand for a page buffer occurs when a page
number within an external file is referenced, and that page number
is not resident in a buffer currently assigned to the file. When
demand occurs and all buffers in the common pool are already
assigned, a buffer is selected for reassignment. If the contents of
the page resident in that buffer has been modified since the buffer
was assigned, the page is first written to its external file at the
position indicated by its page number, and then the buffer is
reassigned to the page of the external file that was referenced.

When a VMM object is created within a sub-domain, sufficient
space for the object is located within the pages already assigned to
its external file, or else a new page is created with a page number
one greater than the largest page number assigned to the file. In
either case, the space is reserved within a page and is designated
by a VMM locator which is constructed from the sub-domain number
which identifies the external file, the page number, and a position
within the page. The position within the page is expressed as a
VMM-defined integer type. When a sub-domain is added to a domain,
its external file, virtual record type, and mode may be identified
explicitly (as in procedure new sub domain) or a reference to an
existing sub-domain may be provTded-instead, creating an alternate
sub-domain number to access the same external file. The use of an
alternate sub-domain number is restricted to contexts in which
locators which use the alternate number are dereferenced: no VMM
objects can be allocated using the alternate number. The purpose of
using an alternate number is to allow the automatic translation of
VMM locators which reference a given sub-domain into the
corresponding VMM locators for a different sub-domain (which is a
new version of the first sub-domain).

The automatic translation is specified by creating a
translation sub-domain which contains a VMM set of locator
associations; the set has membership testing based on locators for
objects in the first sub-domain and associated values which are
locators for objects in the new version. This translation
sub-domain is created by comparing the two versions, and since all
three are then present in a domain at the same time, they all have
distinct sub-domain numbers. Once the translation sub-domain has
been created, the original sub-domain is removed and the translation
sub-domain is given an alternate number which is the same as that
which identified the original sub-domain. When a VMM locator refers
to the translation sub-domain through the alternate number, the
translation is applied by looking up the locator in the set, and
then using the new locator value for the reference. When a locator
refers to the translation sub-domain through its original number, no
translation is performed; thus the VMM locators used within the
translation sub-domain to build the set are not "special". If it

18
INTERMETRICS INCORPORATED 733 CONCORD AVENUE * CAMBRIDGE. MASSACHUSETTS 02138 (617) 681-1840

i , , _ i * 7 , I iMA",



happens that for every member in the translation set, the
translation changes only the sub-domain number in the locator (e.g.,
the new version was nearly identical to the original sub-domain)
then both the original sub-domain and the translation sub-domain can
be removed and the new version given an alternate number the same as
the original's. When a locator refers to the new version through
the alternate number, the fact that the sub-domain is not a
translation sub-domain causes a new locator to be constructed by
replacing the alternate number by the new version's orginal number.

When a sub-domain number is not an alternate number for a
sub-domain, it is said to be the identity sub-domain for the
external file it identifies. An identity sub-domain number is
assigned to an external file by procedure new sub domain. When an
identity sub-domain is first referenced, tfe external file is
initialized with the number assigned (for create mode), or else the
number from the external file is compared to the number assigned
(for any other mode), raising the exception "wrongsubdomain" if
they do not match.

Each identify sub-domain has a single distinguished VMM
locator, known as its root locator, which may be explicitly set or
examined by VMM operations. Since all operations on VMM objects
require a VMM locator to identify the object, the root locator
generally identifies some object in the sub-domain which provides
linkage to all the other objects in that sub-domain. However, since
objects in one sub-domain may be referenced from another, this is
not necessarily so: one sub-domain might serve as a directory for
other sub-domains, in which case the directory sub-domain might be
the only one with a non-null root locator. Further, a sub-domain
which is temporary (i.e., its external file is created and deleted
within a program activation) can be accessed by VMM locators held in
program variables and need not provide for accessibility of its
objects across program activations. In summary, a sub-domain is
characterized within a domain by:

1. sub-domain number;

2. external file of VMM pages;

3. virtual record type;

4. mode of operation;

li5. set of pages defined for placement in the external file;

6. set of buffers assigned to hold resident pages;

7. root locator.

19
INTERMETRICS INCORPORATED * 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

WV --7i 4m mm m i m mmlm



When the sub-domain is not an identity sub-domain, then items (2)
through (7) are represented by the sub-domain number of an identity
sub-domain.

An external file that contains VMM data objects, but which is
not seen in the context of an active sub-domain, is characterized
by:

1. an identity sub-domain number;

2. a virtual record type;

3. a root locator;

4. a set of pages.

3.2.2.2 VMM Locators and Dereferencing

The previous section identified the functionality of VMM
locators with respect to VMM domains and sub-domains. In
particular, it described a translation property of VMM locators
which reference alternate sub-domain numbers.

When a locator is dereferenced, the first step is always to
examine the characteristics of the sub-domain it references and
perform any indicated translation. When the sub-domain number is
not an identity sub-domain, a translation is performed in one of two
ways, depending on the virtual record type of the identity
sub-domain that the referenced sub-domain is linked to.

1. If it is VMM TRANSLATION, then the VMM locator is u-_d as
the identifying value for a find member operation p.'.f'rmed
on the locator association set identified by t:- root
locator of the identity sub-domain, and the value returned
is used as the locator to be dereferenced. (If the
returned valqe also references an alternate sub-domain
number, the translation is repeated.)

2. If the virtual record type is not VMM TRANSLATION, then a
VMM locator is constructed which is thF same as the input
locator, except that the sub-domain number is replaced by
the number of the identity sub-domain.

In either case, the translation always results in a VMM locator
which references an identity sub-domain number. The remainder of
this section then is concerned primarily with locators that
reference identity sub-domains (which are the actual repositories
for VMM data structures).

(a) Locator Model. A VMM locator is the only means of consistentlyi designating a-- object. A locator is, in many ways, similar to an

Ada ACCESS value: it is a "typed pointer" with values generated by
allocation operations; and a distinguished null value which
designates no object at all. Locators within virtual records are

20
INTERMETRICS INCORPORATED 733 CONCORD AVENUE CAMBRIDGE, MASSACHUSETTS 02138 (617 661-1840



used to implement data structures that can be conceptualized as
attributed directed graphs in the same way that Ada ACCESS values
within Ada RECORD objects would be used. Functional differences
between VMM locators and Ada ACCESS values are:

1. A VMM locator value generated by an allocation during a
program activation can be written to an external file and
then be read by a subsequent program activation and still
be guaranteed to designate the same VMM object. By
contrast, an Ada ACCESS value is only defined within the
context of the program activation which performed the
allocation.

2. The addressing range of a VMM locator is defined by the
implementation of the VMM package, and is not dependent on
host machine characteristics or on the size of the run-time
heap available to the program activation.

Considering only the first distinction, the functionality of
VMM locators could be achieved by defining conversion operations
between external files of VMM objects with directed edges
represented by VMM locators, and internal collections of Ada objects
with directed edges represented by ACCESS values. This kind of
approach has been used in some test-bed compiler implementations,
where the external file representation is a sequential text file and
each compiler phase reads, and converts to internal form, the output
from the previous phase, operates on the internal form, and then
writes a text file representation to be read by the next phase [N-6,
N-7]. Another approach to achieving the first functionality avoids
using ACCESS values at all; instead, graph nodes are represented by
elements of a single array of variant records, with directed edges
stored as array indices [N-2, N-51. Although this offers the
advantage that no conversion processing is needed when reading or
writing an external file, memory space utilization becomes a
critical issue in the design of the record variants since the array
elements will be allocated the space required for the largest
variant: optimal utilization occurs when each variant is the same
size. In addition, using array indices to implement pointers
results in a loss of clarity and run-time efficiency, motivating the
design of ACCESS types in the Ada language in the firbL place
[N-8].

The second functional aspect of VMM locators is not addressed
by the original implementation strategies for either TCOL or AIDA :
both rely on sufficient memory resources to contain the internal
representations for all nodes that are used during a graph
traversal.

While the direct addressability of both the VM/370 and OS/32
systems is sufficient to accommodate intermediate representations
for useful Ada programs, an implementation of the compiler and
separate compilation facility that assumed adequate memory to
access all nodes as Ada objects could not be rehosted to a system
with a smaller address space without seriously impacting processing
capacity.

21
INTERMETRICS INCORPORATED 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02136 17) 61.1840

r0



Further, experience with a separate compilation facility for a
Pascal dialect has shown that even the 24-bit addressing range of
VM/370 imposes compile-time limits that can be exceeded by large
applications. Therefore, the model for VMM locators requires, as an
integral part of their use, a discipline which provides nearly
complete independence from memory and addressing constraints imposed
by the host machine. Not only does this requirement establish the
portability of MAPSE tools to smaller machines, but it removes the
absolute limits on processing capacity inherent in any program which
relies on memory addressing to access an internal database. The
actual addressing range for locators is an implementation choice;
one possibility considered a candidate is to implement locators to
address 4096 sub-domains, each with up to 4096 pages, and each page
containing 4096 bytes addressed as 256 16-byte units. Such a
locator value could be represented in 32 bits and would permit up to
16 megabytes of data in each sub-domain.

(b) Mapin Locators to Objects. The VMM strategy uses locatorswhic eth1 e same repr enation internally within an executing
program as they do on an external file - in that sense similar to
the AIDA approach using array indices. However, instead ef
implementing each element of the data structure as an element of an
Ada array and using an array index to provide access, the VMM
approach implements a VMM object as a block of storage units within
a page buffer. The ADDRESS pre-defined attribute is used to convert
an ACCESS value for the buffer to an implementation-defined integer
type to which an offset is added before being converted to an ACCESS
value of a type appropriate to the VMM object being accessed (by
means of UNCHECKED CONVERSION). The advantages of this approach are
basically two-foldT

1. The relative sizes of the record variants to be accessed
do not affect the efficiency of storage utilization: the
number of VMM objects accessible within a buffer is
determined by the minimum space required for each object
and not by a worst-case fit based on the largest variant.

2. Once an ACCESS value is computed for a VMM object,
references to its components do not require repeated
indexing operations.

Recalling that a VMM locator encodes a sub-domain number, a page
number, and a position, the mapping from locator value to ACCESS
value is accomplished in two steps:

1. Locate a page buffer assigned to the sub-domain which
contains the specified page, returning an ACCESS value for
the buffer.

2. Compute the ACCESS value for the object as i
objecttype (buffer.ALL'ADDRESS + position) where
objecttype is an instantiation of the generic function
UNCHECKED CONVERSION with input type an
implementation-defined integer type and result type an
ACCESS type for a VMM object.

22
INTERMETRICS INCORPORATED 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 0213 (617) 601-1840



In terms of the VMM implementation, a single procedure, locate,
takes IN parameters consisting of the domain and the locator value
and produces OUT parameters consisting of the ACCESS value for the
buffer and the value Buffer.ALL'ADDRESS + position. The locate
procedure is defined in the visible part of the VMM implementation
package, and is thus visible to the VMM access package produced by
the representation analyzer (since the analyzer places its name in
the WITH clause for the access package). The tool using the VMM
access package does not normally have the implementation package in
its visibility list, and so it only makes use of the locate
procedure by means of the dereferencing functions defined in the
access package. These functions return values of an unconstrained
ACCESS type for a virtual record type. Thus, the instantiation and
use of UNCHECKED CONVERSION is limited to the package (body)
generated by the representation analyzer and is not used or seen by
the tool which uses VMM. Furthermore, the VMM implementation
package verifies the virtual record type for each sub-domain (in
terms of the IMAGE, or character-string representation, of the
virtual record type enumeral) once, when the external file is first
accessed. The dereferencing functions generated by the
representation analyzer for each virtual record type then use the
ACCESS value for the page buffer (returned by locate) to verify that
the "integer" being converted to an ACCESS value is in fact the
address of a VMM object that was created in a sub-domain specified
to contain objects of that same virtual record type. Thus, the use
of UNCHECKED CONVERSION by the VMM access package to achieve
efficient stoiage utilization does not compromise Ada type safety.
Subsequent component selection using the "converted" ACCESS value is
again subject to the normal discriminant verification applied at
run-time to record variants designated by unconstrained ACCESS
values.

(c) Dereferencing. The process of obtaining an Ada ACCESS value in
order to perform operations on a VMM object designated by a VMM
locator is called locator dereferencing. Since locators define an
address space which is not constrained by the addressing and
memory-size limits of the run-time model for Ada objects, it is
clear that the memory available for Ada objects will, in general,
only be able to represent a subset of the VMM objects accessible to
a program through locators. The subset of VMM objects resident in
memory at any given time must include at least those objects that
are named by ACCESS values in Ada statements. However, a dereference
operation which identifies a VMM object that is not resident in
memory at that time, may need to reuse space previously assigned to
a VMM object, causing the ACCESS value computed foi that object to
become invalid: dereferencing drives the demand paging mechanism.
Since the algorithm that determines which resident objects (i.e.,

4 which page buffer) will be replaced during a dereference operation
cannot predict the future pattern of use for previously computed
ACCESS values, it is always possible that the replaced objects would
include those which were about to be referenced again. In the
absence of further interaction with the dereferencing and underlying

I -. paging mechanism, only the most recently computed ACOESS value could
be considered valid at a given point in a program execution since
the ACCESS values invalidated by that computation (if any) cannot be
determined by the tool builder.

23
INTERMETRICS INCORPORATED 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02136 (617) 661-1840

Flow.-



Thus, every use of data held within a VMM object could require
a locator dereference to obtain an ACCESS value guaranteed to be the
most recently computed value: dereferencing can be viewed as being
analogous to a "load" instruction on a single accumulator machine
(actually, rather than "load" and "store", VMM defines "load
read-only" and "load for update" operations with an implicit "store"
carried out when a value loaded by the second form is about to be
overwritten). Using the analogy, it should be clear that the
performance of a program using VMM depends critically on the speed
of the dereference operation, and that providing a capability
analogous to a multiple-register architecture would allow
significant performance enhancements to be made. VMM defines a
method for reducing the cost of dereference operations in certain
cases by splitting the operation into two separable parts called
pointer computation and pointer dereference; a capability called
dereference locking allows a program to force a VMM object to remain
resident and accessible by the same ACCESS value throughout a
specified region of program execution, effectively allowing full
access to more than one VMM object at a time (a multiple-register

architecture). These operations are essentially optimization
techniques that can be employed by the tool builder using VMM; they
do not change the basic model for locators and dereferencing.

POINTER COMPUTATION: The mapping from a VMM locator to an
ACCESS value was described as a two-step process: (1) locate a page
buffer containing the required page from the specified sub-domain
and (2) perform the address arithmetic. Of the two steps, the first
is much more costly. Even when the desired page is already resident
in a buffer and no I/O operations are required, finding that buffer
from the locator value alone implies some type of indexing or
searching operation. Given the locator realization considered
earlier (supporting 4096 sub-domains, each With up to 4096 pages),
it is clear that direct indexing using the sub-domain number and
page number would not be possible, requiring some type of search.
While the use of simple hashing techniques can make the search time
quite short, just computing a hash takes longer than the time needed
to access the data once the buffer is found. A pointer computation
converts a VMM locator (in the context of a VMM domain) to a form
that already has had translations applied (i.e., it references an
identity sub-domain) and which "remembers" intermediate results from
the last time it was dereferenced. In particular, a VMM pointer
contains:

1. VMM domain value;

2. VMM locator value;

3. ACCESS value for a page buffer;

4. An address within the page buffer (implementation-defined
integer);

5. A timestamp (implementation-defined integer).

24
INTERMETRICS INCORPORATED * 733 CONCORD AVENUE * CAMBRIDGE. MASSACHUSETTS 02138 (617) 601-1840



.. ..--- '

The first four values are obtained by performing any necessary
translation on the input locator value and then invoking procedure
locate to compute the third and fourth values. The timestamp value
is simply copied from the page buffer.

Each page buffer has a timestamp component which is updated by
the page buffer management routines whenever the buffer is
reassigned to a different page or deassigned from active use (e.g.,
when a sub-domain is removed). The update consists of incrementing
a single counter which is maintained for the entire pool of page
buffers, and then copying the incremented value to the particular
page buffer being reassigned. The range of the counter is such that
it could never overflow during the course of a single program
activation; it is initialized once (by elaboration of the library
unit for the VMM implementation package) and never reset. (A 32-bit
integer is adequate for this purpose). The result is that the
timestamp value recorded in the buffer designated by a VMM pointer
will equal the timestamp value recorded in the pointer itself if and
only if the same page has remained resident in that buffer since the
pointer was computed.

POINTER DEREFERENCING: Once a VMM pointer has been computed
from a VMM Tocator, dereferencing the pointer to obtain an ACCESS
value can be accomplished with no hash computation or searching at
all as long as the VMM object remains resident. If the object has
not remained continuously resident since the pointer was computed,
the cost of the dereference is no greater than the cost of
dereferencing the original locator, and may be less (i.e., if the
original locator required translation). Furthermore, the processing
is so simple that pointer dereference functions can be specified as
inline (via the language-defined PRAGMA), with the result that no
procedure calls are required when the object is resident.

DEREFERENCE LOCKING: When a dereference is locked, the VMM
object that is designated by the dereference is forced (by the
buffer management routines) to remain resident in the same buffer,
and thus remain accessible by the same ACCESS value for as long as
the lock remains in effect. This capability allows a program to
safely designate more than one VMM object by an ACCESS value; at any
point in a program, the VMM objects that can be designated by ACCESS
values are those that are locked plus the most recently dereferenced
value.

The way that a dereference is locked depends on whether locator
or pointer dereferencing is used. A locator dereference is locked
by specifying "lock->true" as a parameter to deref lctr; the ACCESS
value returned will then be locked. A pointer der~ference is locked
by invoking procedure lock_ptr with the VMM pointer as parameter; if
the VMM object is not shown to be resident by the pointer, the
exception "pointernot resident" is raised. An advantage of locking
pointer dereferences ig that the decision to lock can be made after
the content of the VMM object has been examined.

25

INTERMETRICS INCORPORATED 722 CONCORD AVENUE 9 CAMBRIDGE. MMBACMUUITThU11U0B ( 11 hh-19N0

* _ _ _ _I I _ _ _ -. -]I



Both kinds of dereferences are unlocked by a checkpointing
mechanism. Procedure mark produces an OUT parameter of type
VMM mark; procedure release takes an IN parameter of the same type.
A cleckpoint is established by invoking mark and identified by the
value it returns. All dereferences which become locked after a
particular checkpoint is established are unlocked by invoking
release with the same checkpoint value or a checkpoint value which
was established earlier. Pointer dereferences can also be unlocked
on an individual basis using procedure unlock_ptr.

3.2.2.3 VMM Data Types

VMM objects are typed objects in the same sense that Ada
objects are typed. In general, a VMM object is designated by a
typed VMM locator, where the type of the locator identifies the
object as either:

1. a virtual record object with components defined by the user
of the VMM implementation by means of virtual record type
declarations; or

2. an object representing a particular data abstraction
directly supported by the VMM implementation.

All such locator types are derived from a single locator type
defined by the VMM implementation package, for which the locate
procedure is defined (see Section 3.2.2.2(b)).

The only operations available to the user of VMM are those
defined in the visible part of the VMM access package generated by
the representation analyzer. That access package contains
dereferencing operations only for the locator type that designates
virtual records. For the other locator types, only the appropriate
operations for each abstraction are provided. Thus, while VMM
locators can be seen as inherently Itypeless" at the lowest level of
implementation, indicating a position within an external file to be
translated to a memory address within a buffer, derived types are
used to establish compile-time verification of consistent locator
usage. Further run-time checks are applied by both the compiled code
(e.g. disciminant verification) and by the VMM implementation (e.g.
virtual record type verification for each sub-domain).

(a) Virtual Record Type. A program examines and modifies a virtual
record Ey-dere-eIng its locator and then operating on the
components of the Ada record object designated by the ACCESS value
so obtained. Although a MAPSE tool will generally use the type
encapsulation facilities of Ada to operate on virtual records as
attributed nodes of threaded lists, trees, dags (directed acyclic
graphs), or other structural abstractions, the VMM access package is
not "aware" of this higher level of abstraction. Rather, the VMM
access package is the means for implementing these abstractions.
Thus, the Diana abstract data type is implemented in terms of
virtual records, with the Diana implementation performing
dereference operations unseen by the tool operating through the
Diana package. This is not to say that virtual records are crude
low-level data containers. Besides simple scalar values or

26!

INTERMETRICS INCORPORATED * 73 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02139 * (617) 661-1840

Im II, . o . _ .- - ... .



references to other virtual records, virtual record
components may contain statically-constrained arrays, nested
records, variable-length strings, or references to objects of an
abstract data type supported by VMM.

For each virtual record type, there are two dereferencing
functions and one allocation function generated by the
representation analyzer and specified in the visible part of the
access package it produces. One dereference function operates on
VMM locators (for virtual records), the other on VMM pointers. The
allocation function returns a VMM pointer rather than a locator;
very often an allocation is shortly followed by one or more
dereferences (e.g. to assign initial values), and returning a
pointer preserves the buffer ACCESS value computed during the
allocation. If only the locator value is needed, the function
ptr to Ictr can be applied to the result at little cost, since it
can be specified as an inline function that simply returns the
locator component of its single pointer parameter. For example, the
specifications generated for the "tree" virtual record type would be
as follows:

FUNCTION dereflctr(vmd: VMMdomain;

lctr: VREClocator;

lock: boolean:=false;

modify: booleant=true) RETURN
tree pkg.accessor;

FUNCTION derefptr(ptr: VREC pointer) RETURN
tree pkg.accessor;

FUNCTION new tree(vmd: VMM domain;

vmsd: VMM subdomain;

kind: tree_pkg.tree kind) RETURN VREC pointer;

An additional pair of procedures is generated for each virtual
record type to support the reading and writing of both the human
readable (VRN) and compressed binary representation of VMM data.
The first procedure takes a string parameter that names a database
object; it builds a symbolic description of the virtual record type
within that database object. The symbolic description includes the
(character string) name of each virtual record component applicable
to each virtual record subtype, and a description of the type of
each component sufficient to allow correct conversion between the
internal value held within the component and a textual (VRN)
representation of that value. The symbolic description is itself
represented by VMM objects of a virtual record type defined by the
VMM implementation as "VREC DESCRIPTION". The database object
containing the description of Virtual record type is associated with
an identitiy sub-domain of a VMM domain which is managed by the VMM

27
INTERMETRICS INCORPORATED * 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 e (617) 661-1940



'II

implementation independently from the domains created by the VMM
user.

The second procedure of the pair also takes an external
filename parameter, but instead of building a virtual record type
description, it accesses a description previously built within that
object by execution of the first procedure. The specifications for
the "tree" virtual record type would be

PROCEDURE buildtreedescription(filename:string);

PROCEDURE gettreedescription(filename:string);

Besides these functions and procedures, whose bodies are
generated specifically for each virtual record type by the
representation analyzer, there are a number of operations that are
applicable to virtual records but use the same specification and
body for locators designating objects of different virtual record
types. The specifications and bodies for such operations are
generally part of the VMM implementation package; the VMM access
package produced by the representation analyzer makes them available
to other compilation units by renaming declarations (compilation
units using VMM mention only the access package and not the
implementation package in their context specifications). Among
these operations are the following:

PROCEDURE set root(vmd: VM4 domain;

vmsd: VMM subdomain;

root: VREC locator);

-- set root locator value for a sub-domain

FUNCTION getroot(vmd: VMM.domain;

vmsd: VMM subdomain) RETURN VREC locator;

-- obtain root locator value for a sub-domain

FUNCTION nextvrec(vmd: VMMdomain;

vmsd: VMM subdomain;

thisvrec: VMMcell locator) RETURN

VMM cell locator;

-- Iterate overall virtual records within a sub-domain.

-- When this vrec is VMM null, the first virtual record is

-- obtained.

28
INTERMETRICS INCORPORATED s 73 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 0213 * (617) 61-1840

;7



-- When this vrec identifies the last virtual record

-- created VMM null is returned.

FUNCTION cell value(vmd: VMM domain;

cell: VMM celllocator) RETURN VREClocator;

-- Convert the VMM cell locator returned by next vrec to a

-- VREC locator.

PROCEDURE delete vrec(vmd: VMMdomain;

vrec: VREC locator);

-- The specified virtual record will no longer be found by

-- next vrec, and subsequent use of the locator for it is

-- erroneous.

PROCEDURE vrnoutput(vmd: VMMdomain;

file: TEXTIO.OUT FILE);

PROCEDURE vrnoutput(vmd: VMMdomain;

vmsd: VMM subdomain;

file: TEXT IO.OUT FILE);

PROCEDURE vrn output(vmd: VMM domain;

vrec: VREC locator;

file: TEXT IO.OUT FILE);

29
INTERMETRICS INCORPORATED * 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

i ii i.I 7 -h I



_ p

-- Output an entire domain, a sub-domain, or a single

-- virtual record in virtual record notation.

PROCEDURE compressed output(vmd: VMMdomain;

file: TEXTIO.OUTFILE);

-- Output a domain in compressed binary form. No smaller

-- granularity is provided for compressed form.

PROCEDURE vrninput(vmd: VMMdomain;

file: TEXTIO.INFILE);

PROCEDURE compressedinput(vmd: VMM domain;

file: TEXT IO.INFILE);

-- Input a domain in virtual record notation or

-- compressed binary form. No smaller granularity is

-- provided for input operations.

(b) Supported Data Abstractions. VMM directly supports abstract (or
encapsulated) -a types for doubly-linked lists (chains), arrays,
uncounted sets, and variable-length strings. Direct support means
that operations on the data types are defined by the VMM
implementation, and that there is a distinctive representation
defined for the type in virtual record notation. The fact that
these types are directly supported does not mean that other commonly
used structures such as trees or dags cannot be defined as abstract
data types; it simply means that the implementation of those types
must be provided by the user of VMM in terms of the virtual record
types on which they will operate, and that the human readable
representation for objects of those types will show the structure by
means of label references in virtual record components. The
directly supported types are not inherently more efficient than such
types could be implemented using virtual records defined by the tool
builder.

The reason for supporting these particular abstractions has to
do primarily with the advantage gained in having a simple "standard"
human-readable representation for them. Lists, arrays, and sets
have a natural representation as a sequence of elements which, with
the possible exception of arrays, is much more comprehensible than a
lower-level exposition of the directed reference structures used to
implement them. A quoted string is more pleasant to look at than a
sequence of separate characters, besides being able to represent
clearly a zero-length string. While trees can be expressed in a
somewhat more comprehensible form by nesting, indenting, or a more
graphic means, the gain in clarity over a simple referential form is
not nearly as great and quickly becomes lost when the size and depth
of the structure approach a size that is likely to be encountered in

30
INTERMETRICS INCORPORATED * 733 CONCORD AVENUE *CAMBRIDGE, MASSACHUSETTS 02138 (617) 661-1840

II i i1|1 *. I . . .



actual applications, or when the form is adapted to include the more
frequently encountered dag. Of course, supporting data abstractions
which have a simple human-readable representation is not useful if
the abstractions themselves are not useful. Extensive experience
with compilers, linkers, separate compilation databases and other
software development and support tools has shown the utility and
effectiveness of the VMM-supported abstractions.

The following paragraphs briefly describe the functionality of
each abstraction and provide Ada specifications for the operations
applicable to each. In general, there is a group of operations
whose specifications depend upon the type of elements organized by
the abstraction and another group whose specifications are fixed.
The first group is generated by the representation analyzer for each
element type defined to be organized by that abstraction in a
virtual record type definition. This is indicated by the notation
elementpkg.typename, where element pkg is considered to identify a
package generated by the representation analyzer to contain
declarations associated with a particular element type; operations
are assumed to be overloaded on the various element types which use
it. The second group of operations is generally defined in the VMM
implementation package to operate on the parent type of locator for

the particular data abstraction. These are made available in the
VMM access package by renaming declarations.

ARRAYS: The array abstraction supported by VMM is similar to
the A[a -capability for dynamically-sized single-dimension arrays.
However, VMK arrays are not simply mapped into corresponding Ada
array objects since that would limit the size of a VMM array to the
size of a page buffer. VMM arrays are indexed by natural numbers
and have a lower bound of one.

Operations generated by the representation analyzer:

FUNCTION new array(vmd: VMM.domain;

vmsd: VMM subdomain;

size: VMM array size)

RETURN elementpkg.array_locator;

FUNCTION element value(vmd: VMM domain;

array_lctr: elementpkg.arraylocator;

index: VMM_arraysize)

RETURN element_pkg.elementtype;

PROCEDURE element value(vmd: VMM.domain;

array_.lctr: element~pkg .array locator;

31
INTERMETRICS INCORPORATED * 73 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 e 1817) 81-1840

W %N 
I1_



'I

index: VMMarray_size;

value: elementpkg.elementtype);

Operations renamed from the implementation package:

FUNCTION size(vmd: VMM domain;

array ictr: VMM array locator)RETURN
VMMarray_size;

PROCEDURE delete(vmd: VMM domain;

arraylctr: VMM array locator);

LISTS: VMM lists are modeled on doubly-linked circular
chains. List operations deal with cell locators that may identify
either a list cell (which represents a single element) or they may
identify a list header (which represents a complete list). When a
list is created, a list header is allocated which is linked to
itself and its locator value is returned, with the result that
subsequent operations treat it as designating an empty list. Both
individual cells and list segments may be moved between lists.

Operations generated by the representation analyzer:

FUNCTION new list(vmd: VMM domain;

vmsd: VMM subdomain)

RETURN element_pkg.cell locator;

FUNCTION new cell(vmd: VMM domain;

vmsd: VMMsubdomain;

initial: element pkg.elementtype)

RETURN elementpkg.celllocator;

FUNCTION cell value(vmd: VMMdomain;

cell: elementpkg.cell_locator)

RETURN elementpkg.element_type;

-- exception if cell is a list header.

PROCEDURE cell value(vmd: VMM domain;

cell: element_pkg.celllocator;

value: elementpkg.elementtype);

32
INTERMETRICS INCORPORATED * 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 861-1840



-- exception if cell is list header.

Operations renamed from the implementation package:

FUNCTION next cell(vmd: VMM domain;

cell: VMM cell locator)

RETURN VMM cell locator;

-- VMM null if last cell in list

FUNCTION prev_cell(vmd: VMM domain;

cell: VMM cell locator)

RETURN VMM cell locator;

-- VMM null if first cell in list

PROCEDURE beforecell(vmd: VMM domain;

cellA, cellB,: VMM celllocator);

-- Inserts cellB before cellA.

-- If cell A is a list header, cellB becomes the last

-- cell.

-- If cellB is a list header, all of its list cells are

-- inserted before cell A, leaving the cell_B list empty.

-- Exception if cell A is not in a list, cell B is in a

-- list and is not a list header, or if cell B is cell A's

-- list header.

PROCEDURE aftercell(vmd: VMM domain;

cellA, cell B: VMMcelllocator); r
-- Like before-cell only insertion is after cell A.

PROCEDURE removecell(vmd: VMMdomain;

cell: VMM cell locator);

-- cell is removed from the list it is in (if any).

FUNCTION tail(vmd: VMM domain

33
INTERMETRICS INCORPORATED *733 CONCORD AVENUE *CAMBRIDGE, MASSACHUSETTS 021368 (617) 661-1840



vmsd: VMM subdomain;

list: VMM cell locator;

cell: VMM cell locator)

RETURN VMM cell locator;

-- Creates a new list in the specified sub-domain

-- and adds to it all cells from list which follow

-- cell, removing them from list.

PROCEDURE delete(vmd: VMM domain;

cell: VMM cell locator);

-- Removes, and then deletes, cell. If list header, then

-- deletes all cells in list and header.

FUNCTION size(vmd: VMM domain;

list: VMM cell locator)

RETURN VMM list size;

-- Number of cells in list.

SETS: VMM sets are modeled on uncounted sets with a somewhat
different realization that depends on the membership testing
algorithm specified when the set is created. The primary
characteristic of sets is the speed of finding a member; insertions,
deletions, and even iterations over all members are not necessarily
simple operations.

The algorithm for membership testing is specified as a value of
a VMM-defined enumeration type and is known as the equality type for
the set. There are five basic equality types as follows:

1. Bit vector equality. Applicable only to sets with elements
of a discrete type; the realization is a bit vector, as in
Pascal sets.

2. Identity equality. Set members. are equal if elements are
the same; for scalar types the values must be equal, while
for sets of VMM locators the designated objects must be the
same object.

3. String equality. Applicable only to sets of VMM strings;
strings are equal if they have the same length and their
characters are the same and in the same order. Case of
alphabetics is significant. Zero-length strings are
equal.

34
INTERMETRICS INCORPORATED 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 ( (17) 61-1840

7i



4. Locator association equality. The realization is a set of
locator associations, each member consisting of a key
locator value and an associated locator value; identity
equality is applied to the key locator value.

5. Key-component equality. Applicable only to a set of
virtual record locators; all virtual records must be of the
same virtual record type. A virtual record definition may
specify that certain components belong to a particular
key-component class. For any given virtual record subtype,
there must be at most one component applicable to that
subtype which belongs to a given key-component class.
Membership testing is based on identity equality of the key
component belonging to the class specified when the set was
created, unless the key component is a VMM string, in which
case string equality is used.

Key-component equality permits general associative addressing
of virtual records; locator association equality is essentially a
special case of this type of equality recognized for its general
usefulness as well as its specific application to translation
sub-domains.

Operations generated by the representation analyzer:

FUNCTION newset(vmd: VMM domain;

vmsd: VMM subdomain;

equality: VMMequality;

class: natural;

size: VMM set size)

RETURN element_pkg.set locator;

FUNCTION member value(vmd: VMM domain;

member: VMMmember locator)

RETURN elementpkg.element_type;

PROCEDURE add member(vmd: VMM.domain;

set: element_pkg.setlocator;

value: elementpkg.element type;

member: OUT VMM member_locator);

-- member returns VMM null unless member to be added

-- already present, in which case member returns that

-- matching member.

35.1 INTERMETRICS INCORPORATED 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 (617) 661-1840

,.j



FUNCTION find member(vmd: VMM domain);

set: elementpkg.set locator;

key_value: elementpkg.key_type)

RETURN VMMmemberlocator;

-- keytype same as element type except for key-component

-- equality. Returns VMM null if member not found.

FUNCTION remove member(vmd: VMM domain;

set: element_pkg.set_locator;

key_value: element pkg.key_type)

RETURN boolean;
-- true if member was in set

PROCEDURE add member(vmd: VMM domain;

set: VMM assoc set locator;

keyvalues,

associatedvalue: VMMlocator;

member: OUT VMMmemberlocator);

-- Adds member to locator association set.

FUNCTION key_value(vmd: VMM domain;

association: VMM member locator)

RETURN VMM-locator;

FUNCTION associated value(vmd: VMM.domain;

association: VMM memberlocator)

RETURN VMM locator;

PROCEDURE associatedvalue(vmd: VMMdomain;

association: VMMmemberlocator)

RETURN VMM locator;

PROCEDURE associated_value(vmd: VMM-domain;

association: VMMmember locator;

value: VMM locator);

36
INTERMETRICS INCORPORATED * 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1640

__ 1 . I



-- associated value can be modified

FUNCTION copy(vmd: VMM domain;

vmsd: VMM subdomain;

set: VMM set locator)

RETURN VMM set locator;

-- makes a copy of the set in the specified sub-domain.

Operations renamed from the implementation package:

FUNCTION next member(vmd: VMM domain;

set: VMMsetlocator;

member: VMM set member)

RETURN VMM._setmember;

-- Interates over members in arbitrary order

FUNCTION size(vmd: VMM.domain;

set: VMM setlocator)

RETURN VMMset size;

-- number of members in the set.

-- The following functions perform the indicated set

-- operation on setl and set2, leaving the result in setl.

-- Functions return true only if setl is modified by the

-- operation.

FUNCTION intersection(vmd: VMMdomain;

setl, set2: VMM set locator)

RETURN boolean;

FUNCTION union(vmd: VMM domain;

setl, set2: VMM set locator)

RETURN boolean;

FUNCTION difference(vmd: VMM domain;

setl, set2: VMM set locator)

RETURN boolean;

37
INTERMETRICS INCORPORATED *733 CONCORD AVENUE *CAMBRIDGE. MASSACHUSETTS 02138 *(817? 661-1840



I
FUNCTION symmetric.diff(vmd: VMMdomain;

setl, set2: VMM set locator)

RETURN boolean;

PROCEDURE delete(vmd: VMM domain;

set: VMM set locator);

STRINGS: VMM variable-length strings are implemented much as
in the TEXT HANDLER package used as an example in [G-l, 7.6].
Manipulations are performed using Ada objects of tye character, type
string and type VMM text, with conversions from VMM string objects
(designated by locatirs) to text objects and assignments from text
objects to VMM string objects made explicitly when required. This
makes effective use of overloading and the power of Ada functions
for handling dynamically-sized objects, and also tends to reduce the
total number of locator dereference. Note that the "&" operator
could not be overloaded on VMM string objects since two values,
domain and locator, are required to identity each object. Besides
the allocate and delete operations there is only a single
selection-function and update-procedure pair defined to operate on
VMM string objects. No specifications need to be generated by the
representation analyzer.

Operations renamed from the implementation package:

FUNCTION newstring(vmd: VMM domain;

vmsd: VMMsubdomain;

initial: VMMtext)

RETURN VMM string_locator;

FUNCTION value(vmd: VMMdomain;

str: VMM.stringlocator)

RETURN VMMtext;

PROCEDURE value(vmd: VMMdomain;

str: VMMstring_locator;

text: VMM text);

PROCEDURE delete(vmd: VMM.domain;

str: VMM stringlocator); j

38
INTERMETRICS INCORPORATED 733 CONCORD AVENUE CAMBRIDGE. MAJIACHUIETTI 0213 * (617) n0.1040



3.2.2.4 Representation Analyzer

The representation analyzer is a MAPSE tool that reads one or
more virtual record type definitions supplied as Ada package
specifications, enforces the restrictions and conventions imposed by
the VMM implementation, and generates a single Ada package
specification and package body that defines an interface between the
VMM implementation and any tool using those virtual record types.
(See Figures 3-2, 3-3).

(a) Input. Input to the representation analyzer is a sequence of
Ada package specifications. Each package specification defines a
virtual record type and is subject to a number of restrictions and
conventions in the way it is defined. The overall structure of each
specification is as follows:

1. Each package mentions VMMpredefinedpkg in its WITH
clause.

2. The name of the package satisfies a naming convention such
that a name for the virtual record type can be constructed
from it.

3. An enumeration type to be used for the discriminant of the
virtual record type is declared with a type mark derived
from the package name by a naming convention.

4. Types and sub-types are declared for use in the
declarations of virtual record components. These
declarations are subject to further conventions and
restrictions described later.

5. A record type which defines the components of virtual
records is declared with a type mark derived from the
package name by a naming convention. This type declaration
is subject to the following restrictions:

a. It must have a single discriminant of the type
identified in 3 above.

b. The discriminant name may only be used in variant
parts and not as a bound in an index constraint or a
value in a discriminant constraint.

c. The component declarations may only be of the form
which specifies a subtype indication, and that type
mark must be either boolean, a name declared in the
same package, or else a name declared in a preceeding
virtual record type definition package. In the
latter case, that other package must be mentioned in
the WITH clause.

The type and subtype declarations for virtual record components
are restricted to use a subset of the full type definition
facilities of Ada. In particular:

39
INTERMETRICS INCORPORATED 733 CONCORD AVENUE CAMBRIDGE, MPSSACHUSETTS 02138 (617) 661-1840



1. No ACCESS, TASK, PRIVATE or fixed-point types may be

defined.

2. Record types may not have discriminants.

3. Array types must be constrained and have only a single
dimension.

A type mark used in the declaration of a virtual record
component can be considered to fall in one of the following
categories:

1. A simple type. This category includes pre-defined integer
and float types (and types derived from them), boolean, and
enumeration types.

2. A constructed type. This category includes records and
one-dimensional arrays. It also includes constrained
sub-types of the variable-length text string type VMM text
(defined in VMM predefined pkg).

3. A VMM locator type. A

While the types in categories (1) and (2) are declared in the
conventional manner in Ada, VMM locator types are declared by
instantiating generic packages defined in VMM predefinedpkg. One
reason for this convention is that it allows the representation
analyzer to associate additional information (the generic actual
parameters) with virtual record components that contain VMM
locators. This additional information includes such things as the
type of elements in a VMM array list or set, the key-component class
of a virtual record component, or a default size for a VMM set.
Such information is needed to support conversions to and from human
readable and compressed binary forms. Another reason for the
convention is that it allows the tool builder to associate a
specific derived locator type for a supported abstraction with the
type of element organized by the abstraction. The complete
specification of these generic packages and how they are used is an
implementation issue, but the following example will convey the
design approach.

Assume that a component of a virtual record is to contain a
locator for a list of colors. Package VMM predefined pkg contains
the following generic package specification Tor defining VMM lists:

GENERIC

TYPE element IS PRIVATE;

PACKAGE list gen IS

TYPE cell-locator IS NEW VMM cell locator;

SUBTYPE element-type IS element;

40

INTERMETRICS INCORPORATED 73 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 0213 * (17) 681-1840



FUNCTION new-list(vmd: VMM domain;

vmd: VMM subdomain)

RETURN cell locator;

-- etc, see Section 3.2.2.3 for other list operations

-- generated by the representation analyzer.

END listgen;

The virtual record type definition package might then contain the

following:

TYPE colortype IS (red, green, blue);

PACKAGE colorlist IS NEW list qen (color_type);

The declaration for a virtual record4 type describing wallpaper might
then be written:

TYPE wallpaper record (kind: wallpaper kind) IS

RECORD

CASE kind IS

WHEN solid => color: color_type;

WHEN pattern => colors: colorlist.celllocator;

END CASE;

END RECORD;

From this the representation analyzer can build a description of the
colors component that identifies it as designating a VMM list of
colors with names of red, green, and blue. This enables the correct
reading of the following virtual record notation (see 3.2.2.5 (a)
and 10.1).

500: pattern [colors => <red blue>]
501: solid [color => green]

(b) Processing. Since the input to the representation analyzer is
legal-Ada, the bulk of the front end processing is done by invoking
the LEXSYN, SEM, and (possibly) GENINST phases of the compiler.
Since the generics used to specify virtual record type components
are particularly simple (containing no procedure or function formal
parameters) and in fact could be "known" by the representation
analyzer (they are part of the VMM implementation, just like the
representation analyzer itself), GENINST could be omitted and the
represention analyzer would deal with the semantics of the generics
it understands itself.

41

INTERMETRICS INCORPORATED 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 ( (17) 61-1840

IA- rjn [E



Which ever approach is taken to the generics, the Diana tree is
examined to verify that the conventions and restrictions for
specifying virtual record types have been observed. If not,
messages are added to any messages already attached to the
compilation unit by the compiler. If no errors are detected by the
compiler phases, and no deviations from the VMM conventions are
found, a new package specification and a package body are
generated.

The package specification is a straightforward mechanical
transformation of the input specifications, nesting them within a
package specification named VMM access.pkg, and adding further items
such as:

1. Within each nested package add a type declaration named
accessor which is an ACCESS type for the variant record
type defined in it.

2. Outside the nested packages, define an enumeration type
named VREC types which lists the name of each virtual
record type (obtained by a naming convention applied to
each package name). The first two enumerals are always
VMMTRANSLATION and VMMDESCRIPTION.

3. Add renaming declarations for entities declared in the VMM
implementation package which need to be available to the
user (e.g. the "fixed" operations described in Section
3.2.2.3). Also add renaming declarations outside the
nested packages for procedures and functions declared by
the generic instantiations inside the nested procedure,
overloading them.

4. Add (overloaded) declarations for virtual record creation
and dereferencing operations as well as other fixed
declarations.

5. Add PRAGMAs where appropriate (e.g. arrays of boolean or
character are packed, accessor types are checkpointed
[1-4, 10.4]).

The package body generation requires:

1. Initializing Ada data structures in the generated package
with the size of each virtual record subtype and the offset
and type description of key components for each
key-component class.

2. Generating the build foo description procedure (where foo
in a virtual record type,-see 3.2.2.3).

Both of these functions require imparting to the generated
package certain characteristics of virtual record types, such as the
size of an object of each subtype and the offset of each componet
applicable to each subtype. This is done by generating expressions

42

INTERMETRICS INCORPORATED 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02131 (617) 661-1640

.... ... . mmm____mmm___



Pl

which use the predefined language attributes SIZE and POSITION,
divorcing the representation analyzer from knowledge of the
representation decisions that will be made by the compiler when the
access package is compiled.

The names of the virtual record types and the names of all
components applicable to each subtype are determined by examining
the Diana symbol table.

(c) Output. The output from the representation analyzer consists of
an error/summary listing and a package specification and body in
source form. The error/summary listing contains any messages
generated by the compiler phases used to process the input, as well
as messages indicating any violations of the restrictions and
conventions imposed by VMM. If there are no errors, a summary of
the virtual record types may be optionally produced, showing for
each virtual record subtype the names and types of components
applicable to it.

The package specification output is named VMM access pkg, and
it mentions VMM implementation_pkg in its WITH clause. It contains
the input specifications as nested packages and has other
declarations as described in (b) above. The package body for
VMM access pkg mentions UNCHECKED CONVERSION in its WITH clause and
supplies tFe bodies for those entities in the specification which
require bodies.

3.2.2.5 External Forms

(a) Human-Readable (Virtual Record Notation). Virtual Record
Notation (VRN) is a readable text representation used to describe
VMM data structures. A MAPSE tool that operates on a virtual memory
domain can convert the entire domain or a set of sub-domains to or
from VRN, using operations declared in the VMM access package. VRN
preserves the semantics of VMM data structures, including the
distribution of virtual records among sub-domains and explicit
sharing of data values. The syntax of VRN is derived from the
syntax proposed for an external representation of Diana (reference I
with some significant departures. These are motivated by the fact
that VRN describes a data structure implementation rather than a
data abstraction. The notation explicitly shows how the data
structure is realized in terms of Ada records, database objects, and
the set of data abstractions implemented by VMM. Thus, each VMM
object is associated with the database object in which it is stored,
and the VMM data abstractions used for aggregates of objects
(arrays, lists, sets) are explicitly distinguished. On the other
hand, the precise mapping between VRN and VMM objects is based on
name associations determined by the representation analyzer; a
representation can be changed by reading an instance of VRN using a
different set of name associations than that used to create the
instance. In such a case, discrepancies between the VRN being read
and the specified mapping may be noted as "errors," even though the
result may, in fact, be a useful representation conversion. A
grammar for VRN is given in 10.1.

43
INTERMETRICS INCORPORATED 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02136 ( 17) 61-1840

i'li i



Referring to the grammar, it can be seen that a virtual memory
domain is represented as a sequence of sub-domains. Each sub-domain
first declares a list of sub-domain specifications that it will use
in reference to virtual records. Each USE declaration associates a
label for a sub-domain with components that identify a database
object for that sub-domain and a virtual record description produced
by the representation analyzer. The <use reference> which
immediately follows the word DECLARE identifies the USE declaration
that describes the sub-domain being represented. This is the
"identity" sub-domain label, and it is assumed as a prefix to all
record references (and record definitions) contained within the
sub-domain. The form of components for a USE declaration that
defines an identity sub-domain label must include both the name of
the database object to be used for that sub-domain and the name of
the virtual record type for the sub-domain. If a USE declaration
contains a single component that is a <user reference>, then the
label it defines identifies an alternate sub-domain that must not
appear in any <use reference>.

Following the <declare part> are representations of the virtual
records within the sub-domain (in the <record part>). The <record
reference> which follows the word RECORD, identifies the root object
of that sub-domain. Each <record def> represents a VMM object that
is located within that sub-domain. The object is either a virtual
record (with a structure defined by a virtual record description
produced by the representation analyzer) or it is a form of data
aggregate supported by the VMM implementation. The <label> on each
object provides the means by which that object may be referenced
from some other point within the <domain>; when referenced from
within a different sub-domain, the second form of <record reference>
is used, where the first <label> identifies the sub-domain in which
the second <label> is to be resolved. Identification of the
sub-domain is accomplished through the nearest preceding USE
declaration bearing the same label. Within a domain, there must be
at most one sub-domain that has an identity label naming a given
database object, and all USE declarations that explicitly name the
same database object must bear the same label. However, the same
label may appear on more than one USE declaration and be associated
with different database objects in different <declare part>s. For
any given sub-domain label, only the most recent association is
visible to a <record reference>.

A virtual record object is represented by an identifier
followed by components enclosed in special brackets. The identifier
names a discriminant value used in the virtual record description
named by the "identity" USE declaration for the sub-domain. That
discriminant value identifies the names and types of all components
that may be part of the virtual record. Each component associates a
value with a name. The name must be one of those component names
that are applicable to the discriminant value, and the value must be
compatible with the type defined for that component in the virtual
record description. While the discriminant value restricts the
names and types of components that may appear within the record's
delimiting brackets, it does not require that each possible
component be explicitly represented. Those components that have
internally the value they are assigned when a virtual record is

44

INTERMETRICS INCORPORATED e 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 (517) I1-1840

,, , . ..4 . .. • ,
. ... $4 4 m mmmm m k m k mmm mmm~• 

m l m
•8



created (e.g., the value represented by binary zeroes) need not
appear in the external representation.

(b) Compressed Binary Form. The compressed binary form of VMM data
structures is semanticall-equivalent to the human-readable Virtual
Record Notation for a VMM domain. The binary coding of data is
accomplished by using the representation for the pre-defined type
CHARACTER (which is specified in package STANDARD and is the same
for all Ada implementations) to simulate an undifferentiated stream
of bits. The bit stream is read from and written to Ada text files
(defined in package TEXT 10) using the read and write operations
they derive from INPUT OUTPUT; the get and put operation of package
TEXT 10 are not used since these files have no line structure. The
I/O -is performed on seven-bit segments of the stream, where each
segment is represented on the file by the character value
CHARACTER'VAL(segment).

Space compression is achieved in two ways:

1. At the start of a compressed binary representation is a
fixed-length, fixed-format prologue which specifies the length in
bits of various control fields that are used to structure the
remainder of the representation. Among these control fields are
structuring identifiers that identify the logical elements of the
representation, and length specifiers which permit each occurrence
of a numeric value to be represented by the minimum number of bits
required to express its magnitude. Thus, structuring identifiers
play the role of the various terminal symbols of the VRN grammar.
Length specifiers afford the same kind of "space compression"
achieved when numeric values are represented textually with leading
zeroes suppressed, except that the binary compression avoids the
expansion introduced by the textual representation itself.

2. At a higher level, space is compressed by eliminating the
representation of symbolic names for identifiers. Following the
fixed-length prologue is a table of all identifier names needed to
express the data structure in VRN; in the data structure
representations which follow the table, a reference to an identifier
is coded as an index into the table. In this way, the exact
semantics of name association used in VRN are preserved.

Because this type of binary representation depends only on the
representation for ASCII characters within an Ada program, and this
representation is required to be the same for all implementations,
it is host-independent in the sense that it will have the same
meaning on any system. That does not imply that it can be
successfully read into a VMM domain on any system. For example, a
numeric value greater than SYSTEM.MAX INT cannot be read
successfully (although it can be "parsed" ind ignored). This type
of "incompatibility" is equally present in human-readable
representations used for inter-host transport, as well.

45
INTERMETRICS INCORPORATED 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 (617) 661.1840

761.



Experience with a similar compressed representation used to
transport separate compilation database structures from an MVS/370
system to an RSX-1I/M system showed the compressed form to be
approximately one quarter the size of linear graph notation (the
human-readable form used on that system which is similar to the
virtual record notation described here) with all superfluous blanks
and null lines removed.

3.3 Adaptation

3.3.1 Initial Tool Construction

Development of a MAPSE with sufficient functionality and tools
to support its own maintenance and further development requires
several intermediate steps representing subsets of the end desired
functionality. This section describes these steps, and the
functionality of the various subsets. The end goal is a MAPSE that
has sufficient functionality to support APSE development, MAPSE
maintenance, and MAPSE tool maintenance independent of any other
programming support environment. Specifically this includes bug
fixes in both the KAPSE, the Ada Compiler, and all of the tools that
make up the MAPSE. These functionalities exceed those necessary for
embedded computer software development, but are necessary for a
self-hosted MAPSE.

Since no MAPSE exists at present, primary development will take
place on an IBM VM/370 system running the Conversational Monitoring
System (CMS). The MAPSE itself runs under VM/370 with no additional
operating system support other than that supplied by VM/370. The
KAPSE is designed to run on a bare virtual machine. The set of
issues and steps to bridge the gap between a CMS system and a self
hosted MAPSE fall into a broad class of problems called "bootstrap"
issues. MAPSE bootstrap issues fall into three distinct categories:
(1) Compiler bootstrap - the Compiler must be written in Ada and
hosted on the KAPSE; (2) KAPSE bootstrap - the KAPSE must be able to
run on a bare virtual machine and support various MAPSE tools; (3)
MAPSE tool bootstrap - certain of the MAPSE tools must be fully
functional and run on CMS to support other bootstrap development.
Separating the interdependencies of these three categories is
necessary to allow otherwise independent development to occur in
parallel. This separation is achieved by creating subsets of the
MAPSE and KAPSE that run on CMS and provide sufficient functionality
to allow parallel development. Portions of the code used to create
these subsets will necessarily be discarded, but much larger
portions will eventually form a part of the final system.

In the following sections, separate steps are described and
a summary of the resultant functionality is provided. The bootstrap
process allows coding and testing of Ada programs at a very early
stage, both on CMS and on the bare virtual machine. This occurs
long before the MAPSE Ada Compiler is fully functional, allowing
KAPSE development to proceed in parallel with Compiler development. I
This is achieved by modifying the DARPA Ada Compiler to run on and
generate code for the CMS operating system. The steps outlined
below are presented in sequential order, representing larger and
larger subsets of the full MAPSE functionality.

46

INTERMETRICS INCORPORATED 733 CONCORD AVENUE a CAMBRIDGE, MASSACHUSETTS 02138 (617) 661-1840

now



(a) Build an Ada Compilation Facility. The first step in creating a
self--RsEe3-MAPE is to be able T write and debug programs written
in Ada. Supplying this functionality on the development system
(CMS) requires an Ada Compiler that runs on CMS and generates code
that runs on CMS.

This is accomplished by modifying the DARPA Ada Compiler being
built by Intermetrics, Inc. The DARPA Compiler is written in SIMULA
and generates code for a DECSystem-10/20. This compiler will be
rehosted to CMS, using the SIMULA compiler on the IBM system. The
code generator is then modified to produce PL/I. This produces an
Ada-to-PL/I Translator. The PL/I programs are then run through the
PL/I compiler, linked, and executed in the CMS environment. This is
known as the Bootstrap Compiler or initial compilation facility.

Functionality: This stage provides an Ada Translator hosted on
and targeted tor CMS with full Ada syntax and semantic analysis. All
Ada language features except for tasking can be executed. This
permits application program development, and unit testing of Ada
packages that form various parts of the MAPSE. All portions of the
MAPSE that are to be written in Ada can be started, including
testing.

(b) Build a Mini-KAPSE and RTS on CMS. To support the development
of t- DataBase System an-AUaRun Time System on CMS, a mini-KAPSE
is built, simulating KAPSE functions on CMS. Higher level
interfaces and implementation algorithms can be tested by using this
primitive KAPSE simulation. These KAPSE functions are procedures
that are loaded at run time with the PL/I run-time library, and
eventually become KAPSE primitives.

Functionality: This stage permits the first set of integration
tests and some unctional tests to be written and tested for various
parts of the MAPSE. Increased KAPSE-specific testing for all MAPSE
components that depend closely upon the KAPSE can be started.

(c) Build Bare Virtual Machine Run Time System. To permit KAPSE
modules n on the b a-revirtu-al -- hine, a special run time
system is built that completely replaces the PL/I run time system.
This is an extension of the mini-KAPSE, and includes support of
tasking and all Ada language features. The initial program load
generation (IPLGEN) tool provides the capability to create a bare
virtual machine load on the disks, a I allow a stand-alone Ada
program to be loaded into the bare virtal machine using the VM/370
IPL command.

47
INTERMETRICS INCORPORATED 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02136 817) 061-1840

-2., .. 1

- '1



Functionality: This stage permits stand-alone KAPSE functional
tests, as well as increased independence from CMS for MAPSE
component testing. This Run Time System becomes part of the KAPSE
and the Ada Program Run Time System.

(d) Incremental Development of VM/370. This stage includes the full
development of the Ada Comipil-r-wrTen in Ada, the linker, the full
bare virtual machine KAPSE, and the KAPSE version of the Ada Run
Time System. Increasing functionality of one component facilitates
further testing of its dependence on other MAPSE components. The
MAPSE Linker is hosted on CMS and generates load modules for the
KAPSE environment. A special tool (called Inject) inserts these
load modules into the KAPSE Database so that the KAPSE can access
them when it is running. The Compiler and Linker are designed so
that host-specific interfaces are isolated; this permits ease of
rehosting for these two MAPSE tools.

Functionality: When this stage is complete, CMS will be the
host Tor cross compiling to the KAPSE environment. Full Ada will be
supported, and the KAPSE will be complete.

(e) Rehost Ada Compiler, Link Editor and Other MAPSE Generation
Tools.-- -_m-pletethesel l-osting of the MAPS, ti- a Compiler,
Linker, and their support tools must be hosted on the KAPSE. The
Compiler and Linker are rehosted by modifing the separate portions
that depend upon CMS. Specifically these include the VMM
implementation package and file input/output operations. These
tools will be cross compiled by the original Ada Compiler, and
hosted on the KAPSE.

The other tools include LR, the tool used to generate the
syntax analysis phase of the compiler; VMREP, the VMM representation
analyzer; IPLGEN, the tool that generates an Initial Program Load
module for the bare virtual machine; and ASM, the 370 machine code
assembler. These tools will be re-written in Ada or ASM as
appropriate and hosted on the MAPSE.

Functionalit: When this stage is complete, the MAPSE is now
complete, and is self hosted. It is capable of being regenerated
without reference to any other programming support system. Self
rehosting can be used as a functional test, as well as compiler
validation.

48
INTERMETRICS INCORPORATED 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02136 ( 817) 61-1840

------------------------------



3.3.2 Rehosting

The procedures for rehosting a MAPSE are demonstrated by moving
the VM/370 MAPSE to a Perkin-Elmer 8/32 machine running OS/32. The
fact that the MAPSE is completely self-supporting makes this job
simpler than it might otherwise be, since all of the facilities of
the MAPSE are available, and the elements that must be moved are
already written in Ada.

The basic procedure is to develop a cross-compilation, linking,
and loading facility, treating the 8/32 as the target machine. This
is essentially the same as step (d) above, except that the
"development" consists of retargetting the compiler's code
generator, modifying the Linker to produce an output that can be
loaded on the 8/32, and re-writing those portions of the run-time
system that depend on VM/370 so that they can run under OS/32. Once
this has been done, programs can be compiled and linked on VM/370
and run on the 8/32 system.

The final step is similar to step (e), above, except that
modifying the VMM implementation package and input-output package
appropriately for the 8/32 environment and cross-compiling now can
be used to move nearly the entire MAPSE. (A small number of
additional parameters, e.g., number of buffers used by tools, will
also need to be modified in each tool.) The only addition needed to
make this MAPSE completely self-supporting would be to make the
OS/32 assembler invokable from the MAPSE.

49
INTERMETRICS INCORPORATED *733 CONCORD AVENUE *CAMBRIDGE, MASSACHUSETTS 021363 lei?1) 661-1640



PAGE LEFT BLANK INTENTIONALLY

5

INEMTI[ICROAE73 CNODAEU AMGMSACUET 23 87 6-0



4.

A quality product is assured by a combination of sound design,
careful implementation, and effective testing. The CPDP provides a
detailed discussion of the methodologies employed to achieve this
combination of goals in the development of the MAPSE. This section
identifies some specific issues of quality that are particularly
significant for the text parsing and data management facilities of
the MAPSE and defines unit, integration, and acceptance test levels
for them. Before considering them individually, it is worthwhile to
note that the recognition of these facilities as design elements in
itself contributes to the overall quality of the MAPSE.

4.1 Text Parsin5

The lexer and parser generators (LEX and LR) are instance of
tools commonly used in modern compiler construction. Their design
and implementation are largely borrowed from existing tools that are
demonstrably "correct". The primary quality metrics beyond
correctness are then the error recovery characteristics of the
generated parser and the overall level of helpfulness the tools
provide in terms of grammar debugging and documentation aids. The
tools chosen for implementation in the MAPSE exhibit both superior
error recovery in the generated parser and proven aids to grammar
debugging and documentation.

4.1.1 Unit Testing

LEX and LR are unit tested by processing sets of simple lexical
specifications and grammar and examining the generated automata.
Both positive (error-free input) and negative (erroneous input)
tests are performed. Unit tests can be performed using the initial
compilation facility under CMS (see Section 3.3).

4.1.2 Integration Testing

Integration testing consists of generating a complete parser
and lexer for the Ada grammar, combining the sources, and compiling
the result using the initial compilation facility. The resulting
program is then run under CMS with reduction tracing enabled.
Successful testing at this level permits a crossover in the
development and testing of the compiler's LEXSYN phase, eliminating
interim tools used to produce the lexer and parser. The environment
in which the generator programs run is not significant, and could
remain the CMS environment until acceptance testing. However, the
generated lexer and parser must run in each of the interheodiate
environment defined for the compiler.

4.1.3 Acceptance Testing

The acceptance test for LEX and LR consists of recompiling the
generator programs using the MAPSE-hosted compiler, regenerating the
lexer and parser using the new generators, and recompiling the
LEXSYN phase of the compiler. Acceptance of the compiler created by
linking with the new version of LEXSYN defines acceptance of LEX and
LR.

51
INTERMETRICS INCORPORATED *733 CONCORD AVENUE *CAMBRIDGE. MASSACHUSETTS 0213. (617) 661-1040



4i

4.2 Data Management

The VMM implementation supports most other MAPSE tools,
providing access to their data. Besides freedom from error,
significant quality metrics for VMM include "robustness" and error
detection capabilities.

Robustness is used here to indicate a certain resilience in
handling errors; in particular, it applies to errors at the level of
the human interface. This level is manifested in the representation
analyzer, which must read virtual record descriptions prepared by
people, and in the conversion operations which read and write the
human-readable virtual record notation.

Both the representation analyzer and the operations that read
virtual record notation must provide useful error diagnostics and
recovery mechanisms that permit processing to continue until the
complete input is processed. In the case of the operations that
write virtual record notation, the presence of inconsistencies or
errors in the internal representation should be noted, but should
not inhibit output since the primary use of virtual record notation
is as a debugging aid.

Detection and identification of errors here refers primarily to
incorrect or inconsistent use of VMM operations by a tool. Many of
these kinds of errors are detected at compile time due to Ada's
strong typing and the use of derived types to specify the classes of
objects designated by locators. Other errors can be detected by the
VMM implementation, such as dereferencing null locators type,
out-of-bounds indexing of VMM arrays, etc. These kinds of errors
would almost inevitably result in errors being detected by Ada
constraint-checking at some later point in program execution;
however, it is important that the VMM implementation detect these
errors at the place that they are first introduced.

4.2.1 Unit Testing

Unit testing is performed on the VMM implmentation package.
The package is first tested by driver modules that exercise its
primitive "typeless" allocation and dereference operations,
progressing from the single domain single sub-domain case to
multiple domains and sub-domains. Subsequent unit tests are
performed for each directly-supported data abstraction to verify its
abstract properties. These tests use hand-coded interface modules
for those operations that are generated by the representation
analyzer in later stages of development.

4.2.2 Integration Testing

Integration testing is performed using an initial
representation analyzer constructed by modifying the bootstrap
compiler implemented in Simula (see Section 3.3). The virtual
record type definition for the VREC DESCRIPTION virtual record type
is input to this version of the Fepresentation analyzer, and the
access package produced is used to test the facilities for writing
virtual record notation. The test consists of adding a procedure to

52
INTERMETRICS INCORPORATED 723 CONCORD AVENUE *CAMBRIDGE, MASSACHUSETTS 02138 (617) 661.1340

77 .. ... .
b- '7 7 ..... ] - ]... . .......... . . ...-. . . . . . L = _' .r

!
: _ .I . . '": -''m !,



the access package that calls the build VREC DESCRIPTION description
procedure and then calls the vrn output procedure, passing it the
domain value used by the access package to reference the description
(see Section 3.2.2.3). The VRN output produced when the package is
compiled and the test procedure executed is then examined.

Once this test is completed, the virtual record type definition
for the Diana implementation is processed, and the generated access
package is used to begin construction and testing of compiler
phases. Once the LEXSYN and SEM phases are completed, the
representation analyzer can be written in Ada using those phases and
the access package for Diana. When the Ada version of the
representation analyzer is complete, the integration test is
repeated for the new version, and the initial version may be
discarded.

4.2.3 Acceptance Testing

Acceptance testing for VMM is largely composed of acceptance
testing for the MAPSE tools which use it. However, a series of
formal tests for each of the supported data abstractions, the
conversion operations for virtual record notation and compressed
binary form, and for specific domain and sub-domain operations will
be defined.

53/54
INTERMETRICS INCORPORATED • 733 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 (617) UI-1e40

"r . .. . ;-2



5.0 PREPARATION FOR DELIVERY (Y/A)

55/56

INTERMETRICS INCORPORATED *733 CONCORD AVENUE *CAMBRIDGE, MASSACHUSEtTS 02136M (617) @6-160



6. 0 NOTES

None.

57/58

INTERMETRICI INCORPORATED *723 CONCORD AVENUE *CAMBRIDGE. MASSACHUSETTS 02130 (017) U.11040

11r Ill 1111P -O



10.0 APPENDIX I

10.1 Virtual Record Notation Grammar

The following grammar for virtual record notation is given in a

simple variant of BNF, as follows:

1. optional items are enclosed in square brackets;

2. curly braces enclose items that may be repeated zero or
more times;

3. double quotes enclose characters that are not to be
considered BNF meta-characters (e.g. "<u).

The lexical structure of terminals is basically the same as that
defined by Ada, where applicable: <integer>, <float>, <string>,
<identifier>. The compound symbols (G )(, and *) are
constructed from the Ada basic character set and may be replaced by
the single characters r,1 ,and ) when these characteristics are
available. The commenting convention differs from Ada, allowing
comments to be embedded within lines, and to span lines: comments
are both introduced and terminated by a vertical bar (or exclamation
point, depending on the available character set). This convention
allows programs which generate virtual record notation to place
comments beside a token without altering the line structure, and it
allows a human reader to "comment out" portions of lines easily when
using VRN for debugging and testing purposes.

59

INTERMETRICS INCORIORATED *733 CONCORD AVENUE *CAMBRIDGE, MASSACHUSETT 02126 (617) 651130

-- - . . . .! -I



<domain> ::= {<sub-domain>);

<sub-domain> ::= <declare part> <record part> END

<declare part> ::= DECLARE <use reference> <use decl>(<use decl>)

<use decl> ::= <label> / USE (. <components> .)

<record part> ::= RECORD <record reference> {<record def>)

<use reference> ::- <label> "<-"

<record reference> ::= <label> / <label> *<-" I <label> w<-"

<label> ::= <integer> I <identifier>

<record def> s:= <label>: <ident~fier> <record>

I <label>: <aggregate>

<record> ::= (. [<components>] .)

<aggregate> ::= <array> I <list> I <set> I <string>

<components> ::= <component> (;<component>)

<component> -'= <identifier> "=>" <value>

<value> ::= <record> I <basic value>

<basic value> 33= TRUE I FALSE I <integer> I <float> I <string>
I <identifier> I <record reference>
I <array> I <list> I <set>

<array> ::= ( [<sequence>]

<list> ::= "<" [<sequence>] ">"

<set> ::= (* [<sequence>] *)

<sequence> ::= [<size>] (<basic value>)

<size> ::- :<integer>

60
INTERMETRICS INCORPORATED * 733 CONCORD AVENUE o CAMBRIDGE, MASSACHUSETTS 02138 ()17) 61.1840

W,



MISSION
* Of

Rom Air Development Center
RAVC ptan6 and executeA 4e.6ea~ch, devetopment, .te~t and
6etected acquZ.~Ztion p-toqam in Auppo4.t o6 Command, Con-tAot
Comnincationa and Intettigence (C31) act h'Ltiae. TechnicaL
and engineeting 6uppo'tt w~thin a'Lea4 o6 technicat competence
i,6 p'tovided to ESP Ptoguam O66iceA (P0.6) and otheL ESV
dement6. The p'z.nipat technicat mi,Zon a'teai a~e
comrnunicationh, etectAomagne~tc guiLdance and cont'tot, auk-veittance o6 qtound and ae'to6pace object6, intettigence data
coil ecton and handting, indotmation ayztem technotogy,
iono,6pheAic p~'opgation, sofid Atate 6cienceA, mnicAomve
phq,6icA and etecttonic 'tiabz.Litg, maintainabitiity and
conyatibitity.

T~



F I LMED

DIC


